

# 64M Bits SPI Nor Flash

Copyright © 2014 Giantec Semiconductor Corp. (Giantec). All rights reserved. Giantec reserves the right to make changes to this specification and its products at any time without notice. Giantec products are not designed, intended, authorized or warranted for use as components in systems or equipment intended for critical medical or surgical equipment, aerospace or military, or other applications planned to support or sustain life. It is the customer's obligation to optimize the design in their own products for the best performance and optimization on the functionality and etc. Giantec assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and prior placing orders for products.



### **Contents**

| 1. Features                                                           | 5  |
|-----------------------------------------------------------------------|----|
| 2. Genera Description                                                 | 6  |
| 3.Package Types:                                                      | 7  |
| 3.1 Pin Configuration                                                 |    |
| 3.2 Pin Description                                                   | 8  |
| 3.3 Chip Select (/CS)                                                 |    |
| 3.4 Serial Data Input, Output and IOs (DI, DO and IO0, IO1, IO2, IO3) |    |
| 3.5 Write Protect (/WP)                                               |    |
| 3.6 HOLD (/HOLD)                                                      | 8  |
| 3.7 Serial Člock (ĆLK)                                                |    |
| 4.BLOCK DIAGRAM                                                       |    |
| 5.Memory Architecture Diagram (64Mb)                                  | 10 |
| 6. ELECTRICAL CHARACTERISTICS                                         | 11 |
| 6.1 Absolute Maximum Ratings(1)                                       | 11 |
| 6.2 Power-up Timing and Write Inhibit Threshold                       | 11 |
| 6.3 Power Up/Down and Voltage Drop                                    | 12 |
| 6.4 DC Electrical Characteristics: Industrial:                        |    |
| 6.5 AC Measurement Conditions                                         |    |
| 6.6 AC Characteristics                                                |    |
| 6.7 Serial Output Timing                                              |    |
| 6.8 Serial Input Timing                                               |    |
| 6.9 /HOLD Timing                                                      |    |
| 6.10 /WP Timing                                                       |    |
| 7 FUNCTIONAL DESCRIPTION                                              |    |
| 7.1 Standard SPI Instructions                                         |    |
| 7.2 Dual SPI Instructions                                             |    |
| 7.3 Quad SPI Instructions                                             |    |
| 7.4 QPI Instructions                                                  |    |
| 7.5 SPI / QPI DTR Read Instructions                                   |    |
| 7.6 Hold Function                                                     |    |
| 7.7 Software Reset & Hardware /RESET pin                              | 19 |
| 7.8 WRITE PROTECTION                                                  |    |
| 8 STATUS REGISTERS AND INSTRUCTIONS                                   |    |
| 8.1 STATUS REGISTER 1                                                 |    |
| 8.1.1 BUSY Status (BUSY)                                              | 20 |
| 8.1.2 Write Enable Latch Status (WEL)                                 | 20 |
| 8.1.3 Block Protect Bits (BP2, BP1, BP0)                              |    |
| 8.1.4 Top/Bottom Block Protect (TB)                                   | 21 |
| 8.1.5 Sector/Block Protect (SEC)                                      | 21 |
| 8.1.6 Status Register Protect (SRP)                                   | 21 |
| 8.2 STATUS REGISTER 28.2.1 Erase/Program Suspend Status (SUS)         | 22 |
| 9.2.2 Complement Protect (CMP)                                        |    |
| 8.2.2 Complement Protect (CMP)                                        |    |
| 8.2.4 Quad Enable (QE)                                                |    |
| 0.2.7 Quau Lilavic (QL)                                               |    |



| 8.2.5 Lock Down and OTP (SRP1)                                                | 23 |
|-------------------------------------------------------------------------------|----|
| 8.3 STATUS REGISTER 3                                                         | 23 |
| 8.3.1 /HOLD or /RESET Pin Function (HOLD/RST)                                 | 23 |
| 8.3.2 Output Driver Strength (DRV1, DRV0)                                     | 24 |
| 8.3.3 Write Protect Selection (WPS)                                           | 24 |
| 8.3.4 Reserved Bits - Non Functional                                          | 24 |
| 8.4 Status Register Memory Protection (CMP = 0)                               | 25 |
| 8.5 Status Register Memory Protection (CMP = 1)                               |    |
| 8.6 Individual Block Memory Protection (WPS=1)                                |    |
| 9 Commands DESCRIPTION                                                        |    |
| 9.1 Commands Table                                                            |    |
| 9.1.1 Instruction Set Table 1(Standard/Dual/Quad SPI, 3-Byte Address Mode)(1) |    |
| 9.1.2 Instruction Set Table 2 (Dual/Quad SPI Instructions)                    |    |
| 9.1.3 Instruction Set Table 5(QPI Instructions)                               | 30 |
| 9.1.4 Instruction Set Table 7 (DTR with SPI Instructions)                     | 31 |
| 9.1.5 Instruction Set Table 9 (DTR with QPI Instructions)                     |    |
| 9.2 Manufacturer and Device Identification                                    | 32 |
| 9.3 Write Enable (WREN) (06h)                                                 |    |
| 9.4 Write Disable (WRDI) (04h)                                                |    |
| 9.5 Write Enable for Volatile Status Register (50h)                           |    |
| 9.6 Read Status Register (05h/35h/15h)                                        |    |
| 9.7 Write Status Register (WRSR) (01h/31h/11h)                                |    |
| 9.8 Read Data Bytes (READ) (03h)                                              | 38 |
| 9.9 Fast Read (0Bh)                                                           | 39 |
| 9.10 DTR Fast Read (0Dh)                                                      | 41 |
| 9.11 Dual Output Fast Read (3Bh)                                              |    |
| 9.12 Quad Output Fast Read (6Bh)                                              |    |
| 9.13 Dual I/O Fast Read (BBH)                                                 |    |
| 9.14 DTR Fast Read Dual I/O (BDh)                                             |    |
| 9.15 Quad I/O Fast Read (EBH)                                                 |    |
| 9.16 DTR Fast Read Quad I/O (EDh)                                             |    |
| 9.17 Set Burst with Wrap (77H)                                                |    |
| 9.18 Page Program (PP) (02H)                                                  |    |
| 9.19 Quad Page Program (32H)                                                  |    |
| 9.20 Sector Erase (SE) (20H)                                                  |    |
| 9.21 32KB Block Erase (BE) (52H)                                              |    |
| 9.22 64KB Block Erase (BE) (D8H)                                              |    |
| 9.23 Chip Erase (CE) (60/C7H)                                                 |    |
| 9.24 Deep Power-Down (DP) (B9H)                                               |    |
| 9.25 Release from Deep Power-Down and Read Device ID (RDI) (ABH)              | 64 |
| 9.26 Read Manufacture ID/ Device ID (REMS) (90H)                              |    |
| 9.26 Read Manufacture ID/ Device ID Dual I/O (92H)                            |    |
| 9.27 Read Manufacture ID/ Device ID Quad I/O (94H)                            |    |
| 9.28 Read Identification (RDID) (9FH)                                         |    |
| 9.29 Read Unique ID Number (4Bh)                                              |    |
| 9.30 Program/Erase Suspend (PES) (75H)                                        | 7  |
| 9.31 Program/Erase Resume (PER) (7AH)                                         | 73 |
| 9.32 Enable Reset (66H) and Reset (99H)                                       | 74 |
| 9.33 Read SFDP Register (5Ah)                                                 |    |
|                                                                               |    |



| 9.34 Erase Security Registers (44h)        | 82  |
|--------------------------------------------|-----|
| 9.35 Program Security Registers (42h)      |     |
| 9.36 Read Security Registers (48h)         |     |
| 9.37 Set Read Parameters (C0h)             |     |
| 9.38 Burst Read with Wrap (0Ch)            | 86  |
| 9.39 DTR Burst Read with Wrap (0Eh)        | 87  |
| 9.40 Enter QPI Mode (38h)                  |     |
| 9.41 Exit QPI Mode (FFh)                   | 89  |
| 9.42 Individual Block/Sector Lock (36h)    | 90  |
| 9.43 Individual Block/Sector Unlock (39h)  |     |
| 9.44 Read Block/Sector Lock (3Dh)          | 92  |
| 9.45 Global Block/Sector Lock (7Eh)        | 93  |
| 9.46 Global Block/Sector Unlock (98h)      | 93  |
| 9.47 Mini Sector Erase (MSE) (82H)         | 94  |
| 10 Package Information                     |     |
| 10.1 Package SOP8 208MIL                   | 95  |
| 10.2 Package SOP8 150MIL                   | 96  |
| 10.3 Package WSON8 (6*5mm)                 | 97  |
| 10.4 Package WSON8 (4*4mm)                 | 98  |
| 10.5 Package WSON8 (4*3mm)                 | 99  |
| 10.6 Package FANOUT8 (2*3mm)               | 100 |
| 10.7 Package 8ball WLCSP                   |     |
| 10.8 Package 24ball TFBGA                  |     |
| 11 Ordering Information                    | 103 |
| 12 Valid Part Numbers and Top Side Marking | 104 |
| 13 REVISION HISTORY                        |     |
|                                            |     |



#### 1. Features

- Single Power Supply Voltage
  - Full voltage range: 2.3~3.6V
- · Operating Temperature range:
  - 40 to +85 °C
- 64M-bit Serial Flash
  - 8M-byte
  - 256 bytes per programmable page
- Standard, Dual, Quad SPI
  - Standard SPI: CLK, CS#, DI, DO, WP#, HOLD#
  - Dual SPI: CLK, CS#, IO0, IO1, WP#, HOLD#
  - Quad SPI: CLK, CS#, IO0, IO1, IO2, IO3
  - SPI/QPI DTR (Double Transfer Rate) Read
  - Software & Hardware Reset
- High Speed Clock Frequency
  - 110MHz for fast read with 30PF load
  - Dual I/O Data transfer up to 220Mbits/s
  - Quad I/O Data transfer up to 440Mbits/s
- Software/Hardware Write Protection
  - Write protect all/portion of memory via software
  - Enable/Disable protection with WP# Pin
  - Top/Bottom Block protection
- Allows XIP (execute in place) Operation
  - Continuous Read With 8/16/32/64-byte Wrap
- Data Retention
  - 20-year data retention typical
- Minimum 100,000 Program/Erase Cycles

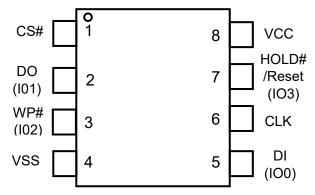
- ESD protection (Human Body Model)
  - 4000V to +4000V
- Fast Program/Erase Speed
  - Page Program time: 0.75ms typical
  - Sector Erase time: 2.7ms typical
  - Block Erase time: 2.7ms typical
  - Chip Erase time: 5.8ms typical
- Flexible Architecture
  - Uniform Sector of 2K-byte
  - Uniform Sector of 4K-byte
  - Uniform Block of 32/64K-byte
  - Erase/Program Suspend/Resume
- Low Power Consumption
  - 8uA typical Standby current
  - 0.5uA typical power down current
- · Advanced security Features
  - 3\*1024 Byte Security Registers With OTP Lock
  - 128-Bit Unique Serial Number for each device
- Space Efficient Packaging:
  - 8-pin SOIC 208/150 mil
  - 8-pad WSON 6X5 mm
  - 8-pad WSON 4X4 mm
  - 8-pad WSON 4X3 mm
  - 8ball WLCSP
  - 24-ball TFBGA
  - Contact Giantec for KGD and other



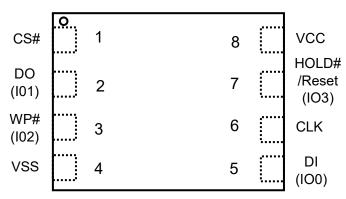
#### 2. Genera Description

GT25Q64A-S is 64Mb bits Serial NOR Flash, The array is organized into 32,768 programmable pages of 256-bytes each. Up to 256 bytes can be programmed at a time. Pages can be erased in groups of 4 (1KB sector erase), groups of 16 (4KB Sector erase), groups of 128 (32KB block erase), groups of 256 (64KB block erase) or the entire chip (chip erase), The device operates on a single 2.3V to 3.6V power supply with current consumption as low as 1uA Standby current and 0.1µA for power-down. All devices are offered in space-saving packages.

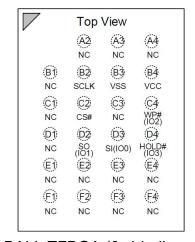
The GT25Q64A-S support the standard Serial Peripheral Interface (SPI), Dual/Quad I/O SPI, Quad Peripheral Interface (QPI) as well as Double Transfer Rate (DTR): Serial Clock, Chip Select, Serial Data I/O0 (DI), I/O1 (DO), I/O2 (/WP), and I/O3 (/HOLD). SPI clock frequencies of up to 110MHz are supported allowing equivalent clock rates of 220MHz (110MHz x 2) for Dual I/O and 440MHz (110MHz x 4) for Quad I/O when using the Fast Read Dual/Quad I/O instructions. These transfer rates can outperform standard Asynchronous 8 and 16-bit Parallel Flash memories. The Continuous Read Mode allows for efficient memory access with as few as 8-clocks of instruction-overhead to read a 24-bit address, allowing true XIP (execute in place) operation.


A Hold pin, Write Protect pin and programmable write protection, with top or bottom array control, provide further control flexibility. Additionally, the device supports JEDEC standard manufacturer and device ID and SFDP Register, a 128-bit Unique Serial Number and three 1024-bytes Security Registers.

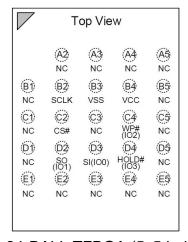



#### 3.Package Types:

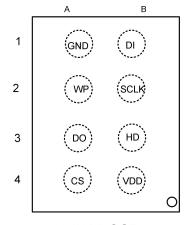
**GT25Q64A-S** is offered in an 8-pin plastic 208mil/150-mil width SOIC (package code W/G), an 8-pad WSON 6X5-mm (package code WS), an 8-pad WSON 4X3-mm (package code WX), and 8-ball WLCSP as below.Package diagrams and dimensions are illustrated at the end of this datasheet.


#### 3.1 Pin Configuration




SOP8 208mil/150mil and TSSOP




WSON 6x5/4x4/4x3, FANOUT 2x3



24-BALL TFBGA (6x4 ball array)



24-BALL TFBGA (5x5 ball array)



8ball WLCSP

#### 3.2 Pin Description

| Pin Name              | I/O | Function                                     |
|-----------------------|-----|----------------------------------------------|
| /CS                   | I   | Chip Select Input                            |
| DO(IO1)               | I/O | Data Output (Data Input Output 1)*1          |
| /WP(I/O2)             | I/O | Write Protect Input ( Data Input Output 2)*2 |
| GND                   |     | Ground                                       |
| DI(I/O0)              | I/O | Data Input (Data Input Output 0)*1           |
| CLK                   | I   | Serial Clock Input                           |
| /HOLD or /Reset(I/O3) | I/O | Hold or Reset Input (Data Input Output 3)*2  |
| VCC                   |     | Power Supply                                 |

#### 3.3 Chip Select (/CS)

The SPI Chip Select (/CS) pin enables and disables device operation. When /CS is high the device is deselected and the Serial Data Output (DO, or IO0, IO1, IO2, IO3) pins are at high impedance. When deselected, the devices power consumption will be at standby levels unless an internal erase, program or write status register cycle is in progress. When /CS is brought low the device will be selected, power consumption will increase to active levels and instructions can be written to and data read from the device. After power-up, /CS must transition from high to low before a new instruction will be accepted. The /CS input must track the VCC supply level at power-up (see "Write Protection"). If needed a pull-up resister on /CS can be used to accomplish this.

#### 3.4 Serial Data Input, Output and IOs (DI, DO and IO0, IO1, IO2, IO3)

The **GT25Q64A-S** supports standard SPI, Dual SPI and Quad SPI operation. Standard SPI instructions use the unidirectional DI (input) pin to serially write instructions, addresses or data to the device on the rising edge of the Serial Clock (CLK) input pin. Standard SPI also uses the unidirectional DO (output) to read data or status from the device on the falling edge of CLK.

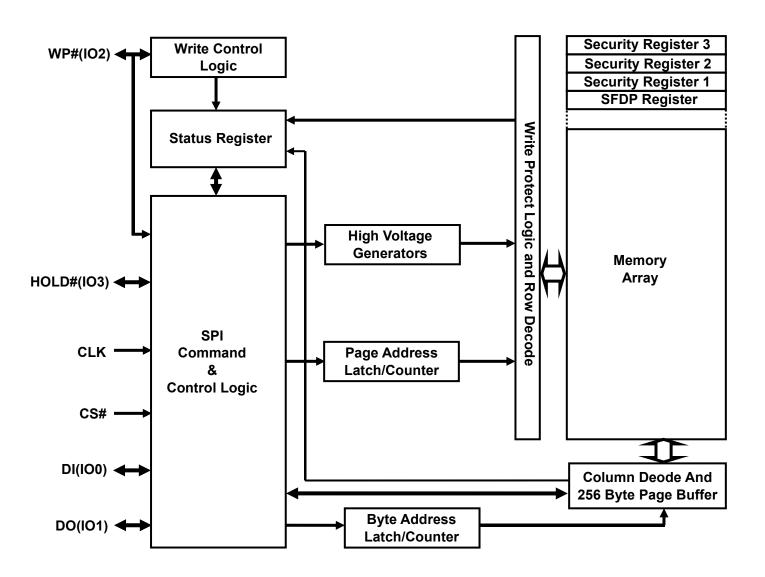
Dual and Quad SPI instructions use the bidirectional IO pins to serially write instructions, addresses or data to the device on the rising edge of CLK and read data or status from the device on the falling edge of CLK. Quad SPI instructions require the non-volatile Quad Enable bit (QE) in Status Register-2 to be set. When QE=1, the /WP pin becomes IO2 and /HOLD pin becomes IO3.

#### 3.5 Write Protect (/WP)

The Write Protect (/WP) pin can be used to prevent the Status Register from being written. Used in conjunction with the Status Register's Block Protect (CMP, SEC, TB, BP2, BP1 and BP0) bits and Status Register Protect (SRP) bits, a portion as small as a 4KB sector or the entire memory array can be hardware protected. The /WP pin is active low. When the QE bit of Status Register-2 is set for Quad I/O,the /WP pin function is not available since this pin is used for IO2.

#### 3.6 HOLD (/HOLD)

The /HOLD pin allows the device to be paused while it is actively selected. When /HOLD is brought low,while /CS is low, the DO pin will be at high impedance and signals on the DI and CLK pins will be ignored (don't care). When /HOLD is brought high, device operation can resume. The /HOLD function can be useful when multiple devices are sharing the same SPI signals. The /HOLD pin is active low. When the QE bit of Status Register-2 is set for Quad I/O, the /HOLD pin function is not available since this pin is used for IO3. See the pin configuration of Quad I/O operation.


#### 3.7 Serial Clock (CLK)

The SPI Serial Clock Input (CLK) pin provides the timing for serial input and output operations. ("See SPI Operations") Notes:

- 1. IO0 and IO1 are used for Standard and Dual SPI instructions
- 2. IO0 IO3 are used for Quad SPI instructions, /WP & /HOLD functions are only available for Standard/Dual SPI.



#### **4.BLOCK DIAGRAM**



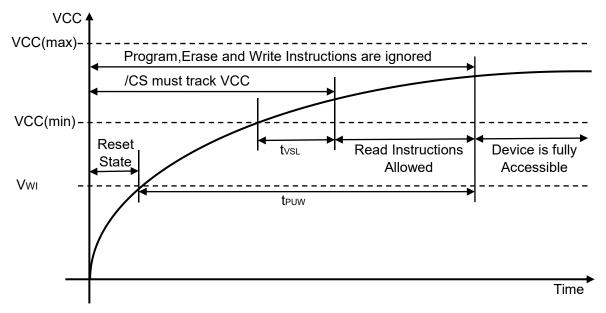


### 5.Memory Architecture Diagram (64Mb)

| 64KB Block    | 32KB Block  | 4KB Block | Block Address Range | 256Byte Page | Page Address Range |
|---------------|-------------|-----------|---------------------|--------------|--------------------|
| o II IB BIOCK | OZIND BIOOK | 4KB       | 7FFFFFh – 7FF000h   | 256 Bytes    | 7FFFFFh – 7FFF00h  |
|               |             | 4KB       | 7FEFFFh – 7FE000h   | 256 Bytes    | 7FFEFFh – 7FFE00h  |
|               |             | 4KB       | 7FDFFFh – 7FD000h   | 256 Bytes    | 7FFDFFh – 7FFD00h  |
|               |             | 4KB       | 7FCFFFh – 7FC000h   | 256 Bytes    | 7FFCFFh – 7FFC00h  |
|               | 32KB        | 4KB       | 7FBFFFh – 7FB000h   | 256 Bytes    | 7FFBFFh – 7FFB00h  |
|               |             | 4KB       | 7FAFFFh – 7FA000h   | 256 Bytes    | 7FFAFFh – 7FFA00h  |
|               |             | 4KB       | 7F9FFFh – 7F9000h   | 256 Bytes    | 7FF9FFh – 7FF900h  |
|               |             | 4KB       | 7F8FFFh – 7F8000h   | 256 Bytes    | 7FF8FFh – 7FF800h  |
| 64KB          |             | 4KB       | 7F7FFFh – 7F7000h   | 256 Bytes    | 7FF7FFh – 7FF700h  |
|               |             | 4KB       | 7F6FFFh – 7F6000h   | 256 Bytes    | 7FF6FFh – 7FF600h  |
|               |             | 4KB       | 7F5FFFh – 7F5000h   | 256 Bytes    | 7FF5FFh – 7FF500h  |
|               |             | 4KB       | 7F4FFFh – 7F4000h   | 256 Bytes    | 7FF4FFh – 7FF400h  |
|               | 32KB        | 4KB       | 7F3FFFh – 7F3000h   | 256 Bytes    | 7FF3FFh – 7FF300h  |
|               |             | 4KB       | 7F2FFFh – 7F2000h   | 256 Bytes    | 7FF2FFh – 7FF200h  |
|               |             | 4KB       | 7F1FFFh – 7F1000h   | 256 Bytes    | 7FF1FFh – 7FF100h  |
|               |             | 4KB       | 7F0FFFh – 7F0000h   | 256 Bytes    | 7FF0FFh – 7FF000h  |
|               |             |           | 1 .                 |              |                    |
|               |             |           |                     |              |                    |
|               |             |           |                     |              |                    |
|               |             | 4KB       | 00FFFFh – 00F000h   | 256 Bytes    | 000FFFh – 000F00h  |
|               |             | 4KB       | 00EFFFh - 00E000h   | 256 Bytes    | 000EFFh - 000E00h  |
|               |             | 4KB       | 00DFFFh – 00D000h   | 256 Bytes    | 000DFFh – 000D00h  |
|               | 2017        | 4KB       | 00CFFFh - 00C000h   | 256 Bytes    | 000CFFh - 000C00h  |
|               | 32KB        | 4KB       | 00BFFFh – 00B000h   | 256 Bytes    | 000BFFh – 000B00h  |
|               |             | 4KB       | 00AFFFh – 00A000h   | 256 Bytes    | 000AFFh – 000A00h  |
|               |             | 4KB       | 009FFFh - 009000h   | 256 Bytes    | 0009FFh - 000900h  |
| 64KB          |             | 4KB       | 008FFFh – 008000h   | 256 Bytes    | 0008FFh – 000800h  |
| 04NB          |             | 4KB       | 007FFFh – 007000h   | 256 Bytes    | 0007FFh – 000700h  |
|               |             | 4KB       | 006FFFh – 006000h   | 256 Bytes    | 0006FFh – 000600h  |
|               |             | 4KB       | 005FFFh – 005000h   | 256 Bytes    | 0005FFh – 000500h  |
|               | 221/10      | 4KB       | 004FFFh – 004000h   | 256 Bytes    | 0004FFh – 000400h  |
|               | 32KB        | 4KB       | 003FFFh – 003000h   | 256 Bytes    | 0003FFh – 000300h  |
|               |             | 4KB       | 002FFFh – 002000h   | 256 Bytes    | 0002FFh – 000200h  |
|               |             | 4KB       | 001FFFh – 001000h   | 256 Bytes    | 0001FFh – 000100h  |
|               |             | 4KB       | 000FFFh – 000000h   | 256 Bytes    | 0000FFh – 000000h  |



#### 6. ELECTRICAL CHARACTERISTICS

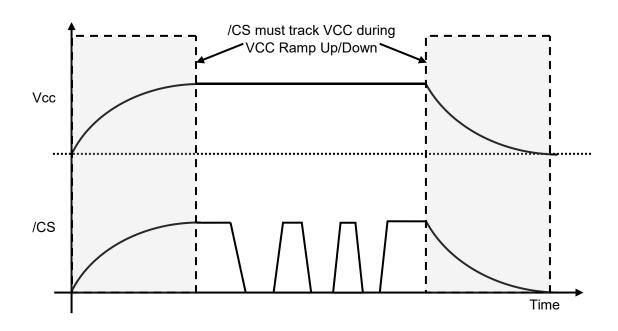

#### **6.1 Absolute Maximum Ratings**(1)

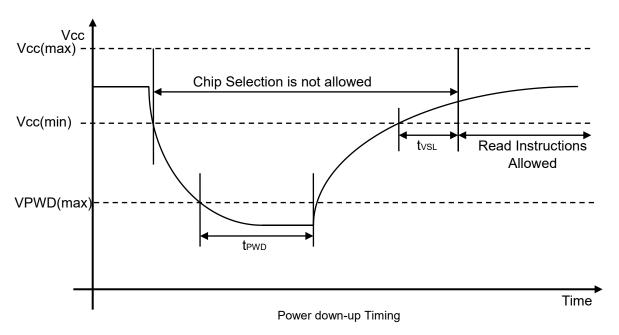
| PARAMETERS                      | SYMBOL | CONDITIONS                         | RANGE             | UNIT |
|---------------------------------|--------|------------------------------------|-------------------|------|
| Supply Voltage                  | VCC    |                                    | -0.6 to VCC+0.6V  | V    |
| Voltage Applied to Any Pin      | V io   | Relative to Ground                 | -0.6 to VCC+0.4V  | V    |
| Transient Voltage on any Pin    | VIOT   | <20nS Transient Relative to Ground | -2.0V to VCC+2.0V | V    |
| Storage Temperature             | Тѕтс   |                                    | –65 to +150 °C    | °C   |
| Ambient Operating Temperature   | Ta     |                                    | –40 to +85 °C     | °C   |
| Electrostatic Discharge Voltage | VESD   | Human Body Model(2)                | -6500 to +6500 V  | V    |

#### Notes:

- 1. This device has been designed and tested for the specified operation ranges. Proper operation outside of these levels is not guaranteed. Exposure to absolute maximum ratings may affect device reliability. Exposure beyond absolute maximum ratings may cause permanent damage.
- 2. JEDEC Std JESD22-A114A (C1=100pF, R1=1500 ohms, R2=500 ohms).

#### **6.2 Power-up Timing and Write Inhibit Threshold**





Power-up Timing and Voltage Levels

| PARAMETERS                          | SYMBOL   | sp  | UNIT |      |  |
|-------------------------------------|----------|-----|------|------|--|
| FARAIVIETERS                        | STIVIDOL | Min | Max  | UNII |  |
| VCC (min) to /CS Low                | tvsL(1)  | 200 |      | μS   |  |
| Time Delay Before Write Instruction | tPUW(1)  | 5   |      | ms   |  |
| Write Inhibit Threshold Voltage     | VWI(1)   | 1.0 | 1.4  | V    |  |



#### 6.3 Power Up/Down and Voltage Drop





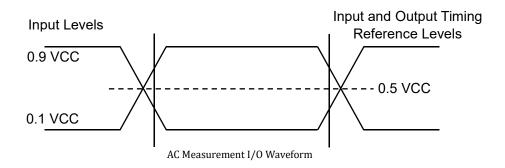
| Symbol | Parameter                                                               | min | max    | unit |
|--------|-------------------------------------------------------------------------|-----|--------|------|
| VPWD   | VCC voltage needed to below VPWD for ensuring initialization will occur |     | 1      | V    |
| tpwd   | The minimum duration for ensuring initialization will occur             | 300 |        | us   |
| tvr    | VCC Rise Time                                                           | 1   | 500000 | us/V |



#### **6.4 DC Electrical Characteristics: Industrial:**

(Ta= -40°C~85°C, VCC=2.3~3.6V)

|        | VCC-2.3*3.0V)                    | Conditions                                   |         | 2.3to 3.6V |         | Unit |
|--------|----------------------------------|----------------------------------------------|---------|------------|---------|------|
| Symbol | Paraneter                        |                                              | Min.    | Тур.       | Max.    |      |
| Cin    | Input<br>Capacitance             | VIN=0V                                       |         |            | 6       | pF   |
| Соит   | Output<br>Capacitance            | Vout=0V                                      |         |            | 8       | pF   |
| ISB    | Standby<br>Current               | CS#=Vcc, all<br>other inputs at<br>0V or Vcc |         | 8.0        | 50      | μА   |
| IDBD   | Deep power<br>down current       | CS#=Vcc, all<br>other inputs at<br>0V or Vcc |         | 0.5        | 5       | μА   |
| ICC1   | Current Read                     | Fr=1MHz                                      |         | 6.0        | 15      | mA   |
| 1001   | DO=Open                          | Fr=33MHz                                     |         | 7.5        | 18      | mA   |
| ICC2   | Current Read                     | Fr=50MHz                                     |         | 8.5        | 20      | mA   |
| 1002   | DO=Open                          | Fr=110MHz                                    |         | 13         | 25      | mA   |
| ICC3   | Program<br>current               | CS#=Vcc                                      |         | 3          | 6       | mA   |
| ICC4   | Erase Current<br>4K              | CS#=Vcc                                      |         | 2          | 6       | mA   |
| ICC5   | Erase Current<br>32K             | CS#=Vcc                                      |         | 2          | 6       | mA   |
| ICC6   | Erase Current<br>64K             | CS#=Vcc                                      |         | 2          | 6       | mA   |
| ICC7   | Erase Current<br>Chip            | CS#=Vcc                                      |         | 2          | 6       | mA   |
| ICC8   | Current Write<br>Status Register | CS#=Vcc                                      |         | 4.8        | 10      | mA   |
| ILI    | Input Leakage<br>Current         |                                              |         | 0.2        | 0.5     | μA   |
| ILO    | Output Leakage<br>Current        |                                              |         | 0.2        | 0.5     | μA   |
| VIL    | Input Low<br>Voltage             |                                              | -0.5    |            | 0.3VCC  | V    |
| VIH    | Input High<br>Voltage            |                                              | 0.7VCC  |            | VCC+0.4 | V    |
| VOL    | Output Low<br>Voltage            | IOL=100μA                                    |         |            | 0.2     | V    |
| VOH    | Output High<br>Voltage           | IOH=-100µA                                   | VCC-0.2 |            |         | V    |


#### Note

1. Typical values measured at 3.0V @ 25°C for the 2.3V to 3.6V range.



#### **6.5 AC Measurement Conditions**

| DADAMETER                        | SYMBOL - | SI                 | LINIT      |      |
|----------------------------------|----------|--------------------|------------|------|
| PARAMETER                        |          | MIN                | MAX        | UNIT |
| Load Capacitance                 | CL       |                    | 30         | pF   |
| Input Rise and Fall Times        | TR,TF    |                    | 5          | ns   |
| Input Pulse Voltages             | VIN      | 0.1 VCC to 0.9 VCC |            | V    |
| Input Timing Reference Voltages  | IN       | 0.3 VCC to 0.7 VCC |            | V    |
| Output Timing Reference Voltages | OUT      | 0.5 VCC            | to 0.5 VCC | V    |

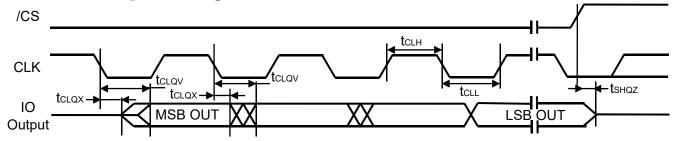


#### **6.6 AC Characteristics**

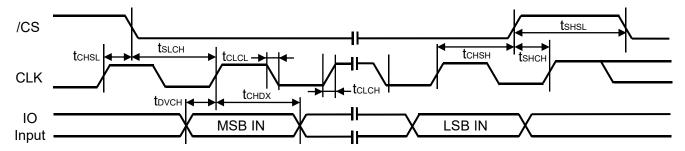
(Ta= -40°C~85°C, VCC=2.3~3.6V)

| Cumbal   | Description                                                        | 2             | Unit |      |      |
|----------|--------------------------------------------------------------------|---------------|------|------|------|
| Symbol   | Description                                                        |               | Тур. | Max. |      |
|          | Clock frequency for all instructions vdd from 2.7-3.6V(Except DTR) | D.C.          |      | 110  | MHz  |
| _        | Clock frequency for all instructions vdd from 2.3-2.7V(Except DTR) | D.C.          |      | 104  | MHz  |
| Fr       | Clock frequency for DTR vdd from 2.7-3.6V                          | D.C.          |      | 80   | MHz  |
|          | Clock frequency for DTR vdd from 2.3-2.7V                          | D.C.          |      | 70   | MHz  |
| Tch(1)   | Clock High Time                                                    | 45%<br>(1/Fc) |      |      | ns   |
| Tcl(1)   | Clock Low Time                                                     | 45%<br>(1/Fc) |      |      | ns   |
| Tclch(4) | Clock Rise Time peak to peak                                       | 0.1           |      |      | V/ns |
| Tchcl(4) | Clock Fall Time peak to peak                                       | 0.1           |      |      | V/ns |
| Tslch    | CS# Active Setup Time (relative to CLK)                            | 7             |      |      | ns   |
| Tchsl    | CS# Not Active Hold Time (relative to CLK)                         | 5             |      |      | ns   |
| Tdvch    | Data In Setup Time                                                 | 2             |      |      | ns   |
| Tchdx    | Data In Hold Time                                                  | 3             |      |      | ns   |
| Tchsh    | CS# Active Hold Time (relative to CLK)                             | 5             |      |      | ns   |
| Tshch    | CS# Not Active Setup Time (relative to CLK)                        | 5             |      |      | ns   |

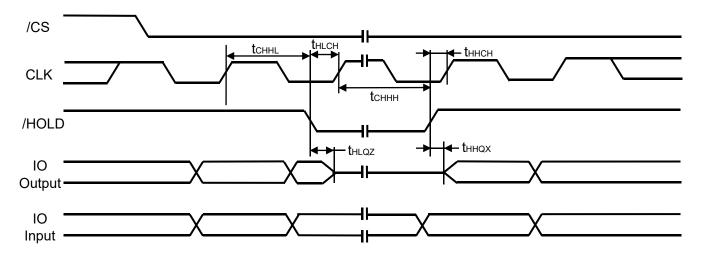



|          |                                                                     | 2    | .3V to 3.6V | ,    |      |
|----------|---------------------------------------------------------------------|------|-------------|------|------|
| Symbol   | Description                                                         | Min. | Тур.        | Max. | Unit |
| Tobal    | CS# Deselect Time From Read to next Read                            | 15   |             |      | ns   |
| Tshsl    | CS# Deselect Time From Erase,Program to Read Status Register        | 30   |             |      | ns   |
| Tshqz(4) | Output Disable Time                                                 |      |             | 10   | ns   |
| Tclqv    | Clock Low to Output Valid                                           |      | 5           | 8    | ns   |
| Tclqx    | Output Hold Time                                                    | 0    |             |      | ns   |
| Thich    | HOLD# Active Setup Time (relative to CLK)                           | 5    |             |      | ns   |
| Tchhh    | HOLD# Active Hold Time (relative to CLK)                            | 5    |             |      | ns   |
| Thhch    | HOLD# Not Active Setup Time (relative to CLK)                       | 5    |             |      | ns   |
| Tchhl    | HOLD# Not Active Hold Time (relative to CLK)                        | 5    |             |      | ns   |
| Thhqx    | HOLD# to Output Low-Z                                               |      |             | 6    | ns   |
| Thlqz    | HOLD# to Output High-Z                                              |      |             | 8    | ns   |
| Twhsl(3) | Write Protect Setup Time                                            | 20   |             |      | ns   |
| Tshwl(3) | Write Protect Hold Time                                             | 100  |             |      | ns   |
| Tdp      | CS# High to Deep Power-down Mode                                    |      |             | 3    | us   |
| Tres1    | CS# High To Standby Mode Without ID Read                            |      |             | 25   | us   |
| Tres2    | CS# High To Standby Mode With ID Read                               |      |             | 25   | us   |
| Tsus     | CS# High to next Instruction after Suspend                          |      |             | 20   | μs   |
| Tuet     | CS# High to next Instruction after reset (except chip erase 60/C7h) |      |             | 30   | μs   |
| Trst     | CS# High to Chip erase after reset                                  |      |             | 150  | us   |
| Tw       | Write Status Register Cycle Time                                    |      | 2.8         | 5    | ms   |
| Tbp      | Byte Program Time (First Byte)                                      |      | 65          | 150  | μs   |
| Трр      | Page Program Time                                                   |      | 0.75        | 2    | ms   |
| Tse      | Sector erase time                                                   |      | 2.7         | 8    | ms   |
| Tbe1     | Block erase time for 32K bytes                                      |      | 2.7         | 8    | ms   |
| Tbe2     | Block erase time for 64K bytes                                      |      | 2.7         | 8    | ms   |
| Tce      | Chip erase time                                                     |      | 5.8         | 14   | ms   |

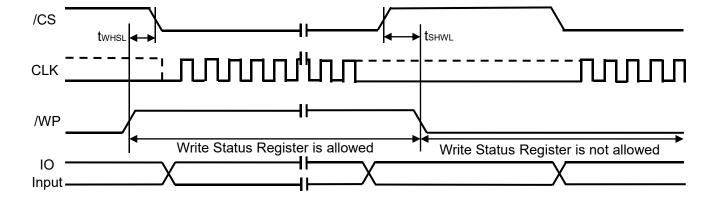
#### Note:


- 1. tCH + tCL must be greater than or equal to 1/ Frequency.
- 2. Typical values given for TA=25°C. Not 100% tested.
- 3. Only applicable as a constraint for a WRSR instruction.
- 4. The value guaranteed by characterization, not 100% tested in production.




#### **6.7 Serial Output Timing**




#### **6.8 Serial Input Timing**



#### 6.9 /HOLD Timing



#### 6.10 /WP Timing





#### **7 FUNCTIONAL DESCRIPTION**

#### 7.1 Standard SPI Instructions

The **GT25Q64A-S** is accessed through an SPI compatible bus consisting of four signals: Serial Clock (CLK), Chip Select (/CS), Serial Data Input (DI) and Serial Data Output (DO). Standard SPI instructions use the DI input pin to serially write instructions, addresses or data to the device on the rising edge of CLK. The DO output pin is used to read data or status from the device on the falling edge CLK.

SPI bus operation Mode 0 (0,0) and 3 (1,1) are supported. The primary difference between Mode 0 and Mode 3 concerns the normal state of the CLK signal when the SPI bus master is in standby and data is not being transferred to the Serial Flash. For Mode 0, the CLK signal is normally low on the falling and rising edges of /CS. For Mode 3, the CLK signal is normally high on the falling and rising edges of /CS.

#### 7.2 Dual SPI Instructions

The GT25Q64A-S supports Dual SPI operation when using the "Fast Read Dual Output (3Bh)" and "Fast Read Dual I/O (BBh)" instructions. These instructions allow data to be transferred to or from the device at two to three times the rate of ordinary Serial Flash devices. The Dual SPI Read instructions are ideal for quickly downloading code to RAM upon power-up (code-shadowing) or for executing non-speed-critical code directly from the SPI bus (XIP). When using Dual SPI instructions, the DI and DO pins become bidirectional I/O pins: IO0 and IO1.


#### 7.3 Quad SPI Instructions

The GT25Q64A-S supports Quad SPI operation when using the "Fast Read Quad Output (6Bh)", and "Fast Read Quad I/O (EBh)" instructions. These instructions allow data to be transferred to or from the device six to eight times the rate of ordinary Serial Flash. The Quad Read instructions offer a significant improvement in continuous and random access transfer rates allowing fast code-shadowing to RAM or execution directly from the SPI bus (XIP). When using Quad SPI instructions the DI and DO pins become bidirectional IO0 and IO1, and the /WP and /HOLD pins become IO2 and IO3 respectively. Quad SPI instructions require the non-volatile Quad Enable bit (QE) in Status Register-2 to be set.

#### 7.4 QPI Instructions

The GT25Q64A-S supports Quad Peripheral Interface (QPI) operations only when the device is switched from Standard/Dual/Quad SPI mode to QPI mode using the "Enter QPI (38h)" instruction. The typical SPI protocol requires that the byte-long instruction code being shifted into the device only via DI pin in eight serial clocks. The QPI mode utilizes all four IO pins to input the instruction code, thus only two serial clocks are required. This can significantly reduce the SPI instruction overhead and improve system performance in an XIP environment. Standard/Dual/Quad SPI mode and QPI mode are exclusive. Only one mode can be active at any given time. "Enter QPI (38h)" and "Exit QPI (FFh)" instructions are used to switch between these two modes. Upon power-up or after a software reset using "Reset (99h)" instruction, the default state of the device is Standard/Dual/Quad SPI mode. To enable QPI mode, the non-volatile Quad Enable bit (QE) in Status Register-2 is required to be set. When using QPI instructions, the DI and DO pins become bidirectional IO0 and IO1, and the /WP and /HOLD pins become IO2 and IO3 respectively. See the following Figure for the device operation modes.





SPI / QPI Operations

#### 7.5 SPI / QPI DTR Read Instructions

To effectively improve the read operation throughput without increasing the serial clock frequency, GT25Q64A-S introduces multiple DTR (Double Transfer Rate) Read instructions that support Standard/Dual/Quad SPI and QPI modes. The byte-long instruction code is still latched into the device on the rising edge of the serial clock similar to all other SPI/QPI instructions. Once a DTR instruction code is accepted by the device, the address input and data output will be latched on both rising and falling edges of the serial clock.

#### 7.6 Hold Function

For Standard SPI and Dual SPI operations, the /HOLD signal allows the GT25Q64A-S operation to be paused while it is actively selected (when /CS is low). The /HOLD function may be useful in cases where the SPI data and clock signals are shared with other devices. For example, consider if the page buffer was only partially written when a priority interrupt requires use of the SPI bus. In this case the /HOLD function can save the state of the instruction and the data in the buffer so programming can resume where it left off once the bus is available again. The /HOLD function is only available for standard SPI and Dual SPI operation, not during Quad SPI. The Quad Enable Bit QE in Status Register-2 is used to determine if the pin is used as /HOLD pin or data I/O pin. When QE=0 (factory default), the pin is /HOLD, when QE=1, the pin will become an I/O pin, /HOLD function is no longer available.

To initiate a /HOLD condition, the device must be selected with /CS low. A /HOLD condition will activate on the falling edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD condition will activate after the next falling edge of CLK. The /HOLD condition will terminate on the rising edge of the /HOLD signal if the CLK signal is already low. If the CLK is not already low the /HOLD condition will terminate after the next falling edge of CLK. During a /HOLD condition, the Serial Data Output (DO) is high impedance, and Serial Data Input (DI) and Serial Clock (CLK) are ignored. The Chip Select (/CS) signal should be kept active low for the full duration of the /HOLD operation to avoid resetting the internal logic state of the device.



#### 7.7 Software Reset & Hardware /RESET pin

The GT25Q64A-S can be reset to the initial power-on state by a software Reset sequence in SPI mode. This sequence must include two consecutive commands: Enable Reset (66h) & Reset (99h). If the command sequence is successfully accepted, the device will take approximately 30uS (tRST) to reset. No command will be accepted during the reset period.

For the SOIC-16 and TFBGA package, GT25Q64A-S provides a dedicated /RESET pin. Drive the /RESET pin low for a minimum period of ~1us (tRESET\*) will reset the device to its initial power-on state.

Hardware /RESET pin has the highest priority among all the input signals. Drive /RESET low for a minimum period of ~1us (tRESET\*) will interrupt any on-going external/internal operations, regardless the status of other SPI signals (/CS, CLK, IOs).

#### Note:

- 1. While a faster /RESET pulse (as short as a few hundred nanoseconds) will often reset the device, a 1us minimum pulse is recommended to ensure reliable operation.
- 2. There is an internal pull-up resistor for the dedicated /RESET pin on the SOIC-16 package. If the reset function is not used, this pin can be left floating in the system.

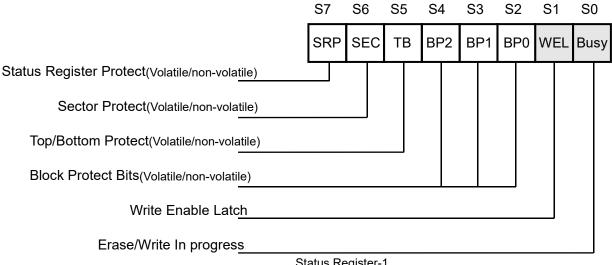
#### 7.8 WRITE PROTECTION

Applications that use non-volatile memory must take into consideration the possibility of noise and other adverse system conditions that may compromise data integrity. To address this concern, the GT25Q64A-S provides several means to protect the data from inadvertent writes.

- Device resets when VCC is below threshold
- Time delay write disable after Power-up
- Write enable/disable instructions and automatic write disable after erase or program
- Software and Hardware (/WP pin) write protection using Status Register
- Write Protection using Power-down instruction
- Lock Down write protection until next power-up
- One Time Program (OTP) write protection\*
  - \* Note: This feature is available upon special order. Please contact Giantec for details.

Upon power-up or at power-down, the GT25Q64A-S will maintain a reset condition while VCC is below the threshold value of VWI, (See Power-up Timing and Voltage Levels). While reset, all operations are disabled and no instructions are recognized. During power-up and after the VCC voltage exceeds VWI, all program and erase related instructions are further disabled for a time delay of tPUW. This includes the Write Enable, Page Program, Sector Erase, Block Erase, Chip Erase and the Write Status Register instructions. Note that the chip select pin (/CS) must track the VCC supply level at power-up until the VCC-min level and tVSL time delay is reached. If needed a pull-up resister on /CS can be used to accomplish this.

After power-up the device is automatically placed in a write-disabled state with the Status Register Write Enable Latch (WEL) set to a 0. A Write Enable instruction must be issued before a Page Program, Sector Erase, Block Erase, Chip Erase or Write Status Register instruction will be accepted. After completing a program, erase or write instruction the Write Enable Latch (WEL) is automatically cleared to a write-disabled state of 0.


Software controlled write protection is facilitated using the Write Status Register instruction and setting the Status Register Protect (SRP, SRL) and Block Protect (CMP, SEC,TB, BP2, BP1 and BP0) bits. These settings allow a portion as small as 4KB sector or the entire memory array to be configured as read only. Used in conjunction with the Write Protect (/WP) pin, changes to the Status Register can be enabled or disabled under hardware control. See Status Register section for further information. Additionally, the Power-down instruction offers an extra level of write protection as all instructions are ignored except for the Release Power-down instruction.



#### **8 STATUS REGISTERS AND INSTRUCTIONS**

The Read Status Register-1 and Status Register-2 instructions can be used to provide status on the availability of the Flash memory array, if the device is write enabled or disabled, the state of write protection, Quad SPI setting, Security Register lock status and Erase/Program Suspend status. The Write Status Register instruction can be used to configure the device write protection features, Quad SPI setting and Security Register OTP lock. Write access to the Status Register is controlled by the state of the non-volatile Status Register Protect bits (SRP, SRL), the Write Enable instruction, and during Standard/Dual SPI operations, the /WP pin.

#### **8.1 STATUS REGISTER 1**



Status Register-1

#### 8.1.1 BUSY Status (BUSY)

BUSY is a read only bit in the status register (S0) that is set to a 1 state when the device is executing a Page Program, Quad Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register or Erase/Program Security Register instruction. During this time the device will ignore further instructions except for the Read Status Register and Erase/Program Suspend instruction (see tW, tPP, tSE, tBE, and tCE in AC Characteristics). When the program, erase or write status/security register instruction has completed, the BUSY bit will be cleared to a 0 state indicating the device is ready for further instructions.

#### 8.1.2 Write Enable Latch Status (WEL)

Write Enable Latch (WEL) is a read only bit in the status register (S1) that is set to 1 after executing a Write Enable Instruction. The WEL status bit is cleared to 0 when the device is write disabled. A write disable state occurs upon power-up or after any of the following instructions: Write Disable, Page Program, Quad Page Program, Sector Erase, Block Erase, Chip Erase, Write Status Register, Erase Security Register and Program Security Register.

#### 8.1.3 Block Protect Bits (BP2, BP1, BP0)

The Block Protect Bits (BP2, BP1, BP0) are non-volatile read/write bits in the status register (S4, S3, and S2) that provide Write Protection control and status. Block Protect bits can be set using the Write Status Register Instruction (see tW in AC characteristics). All, none or a portion of the memory array can be protected from Program and Erase instructions (see Status Register Memory Protection table). The factory default setting for the Block Protection Bits is 0, none of the array protected.

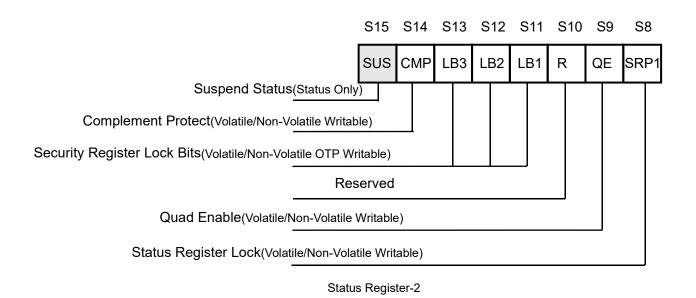


#### 8.1.4 Top/Bottom Block Protect (TB)

The non-volatile Top/Bottom bit (TB) controls if the Block Protect Bits (BP2, BP1, BP0) protect from the Top (TB=0) or the Bottom (TB=1) of the array as shown in the Status Register Memory Protection table. The factory default setting is TB=0. The TB bit can be set with the Write Status Register Instruction depending on the state of the SRP and WEL bits.

#### 8.1.5 Sector/Block Protect (SEC)

The non-volatile Sector/Block Protect bit (SEC) controls if the Block Protect Bits (BP2, BP1, BP0) protect either 4KB Sectors (SEC=1) or 64KB Blocks (SEC=0) in the Top (TB=0) or the Bottom (TB=1) of the array as shown in the Status Register Memory Protection table. The default setting is SEC=0.


#### 8.1.6 Status Register Protect (SRP)

The Status Register Protect bits (SRP) are non-volatile read/write bits in the status register (S7). The SRP bits control the method of write protection: software protection.

| SRP1 | SRP0 | /WP | Status Protection       | Description                                                                                                              |
|------|------|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 0    | 0    | х   | Software Protection     | /WP pin has no control. The Status register can be written to after a Write Enable instruction, WEL=1. [Factory Default] |
| 0    | 1    | 0   | Hardware<br>Protected   | When /WP pinis low the Status Register can not be written to.                                                            |
| 0    | 1    | 1   | Hardware<br>Unprotected | When /WP pin is high the Status register can be written to after a Write Enable instruction, WEL=1.                      |



#### **8.2 STATUS REGISTER 2**



#### 8.2.1 Erase/Program Suspend Status (SUS)

The Suspend Status bit is a read only bit in the status register (S15) that is set to 1 after executing a Erase/Program Suspend (75H or B0H) instruction. The SUS status bit is cleared to 0 by Erase/Program Resume (7AH or 30H) instruction as well as a power-down, power-up cycle.

#### 8.2.2 Complement Protect (CMP)

The Complement Protect bit (CMP) is a volatile/non-volatile read/write bit in the status register (S14). It is used in conjunction with SEC, TB, BP2, BP1 and BP0 bits to provide more flexibility for the array protection. Once CMP is set to 1, previous array protection set by SEC, TB, BP2, BP1 and BP0 will be reversed. For instance, when CMP=0, a top 4KB sector can be protected while the rest of the array is not; when CMP=1, the top 4KB sector will become unprotected while the rest of the array become read-only. Please refer to the Status Register Memory Protection table for details. The default setting is CMP=0.

#### 8.2.3 Security Register Lock Bits (LB[3:1])

The Security Register Lock Bits (LB3, LB2, LB1) are volatile/non-volatile One Time Program (OTP) bits in Status Register (S13, S12, S11) that provide the write protect control and status to the Security Registers. The default state of LB[3:1] is 0, Security Registers are unlocked. LB3-1 can be set to 1 individually using the Write Status Register instruction. LB3-1 are One Time Programmable (OTP), once it's set to 1, the corresponding 256-Byte Security Register will become read-only permanently.

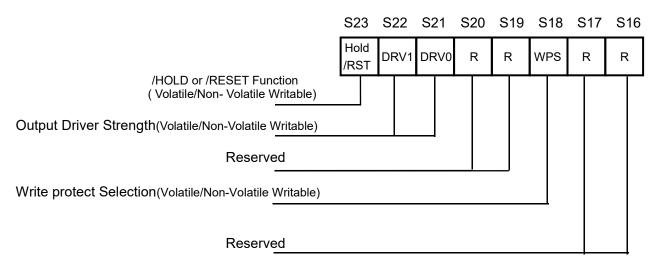
#### 8.2.4 Quad Enable (QE)

The Quad Enable (QE) bit is a volatile/non-volatile read/write bit in the status register (S9) that allows Quad SPI and QPI operation. When the QE bit is set to a 0 state (factory default), the /WP pin and /HOLD are enabled. When the QE bit is set to a 1, the Quad IO2 and IO3 pins are enabled, and /WP and /HOLD functions are disabled.

QE bit is required to be set to a 1 before issuing an "Enter QPI (38h)" to switch the device from Standard/Dual/Quad SPI to QPI, otherwise the command will be ignored. When the device is in QPI mode, QE bit will remain to be 1. A "Write Status Register" command in QPI mode cannot change QE bit from a "1" to a "0".



#### 8.2.5 Lock Down and OTP (SRP1)


The Status Register Protect (SRP1 and SRP0) bits are non-volatile Read/Write bits in the status register. The SRP bits control the method of write protection: software protection, hardware protection, power supply lock-down or one time programmable protection.

| SRP1 | SRP0 | #WP | Status Protection                                 | Description                                                                                                                                    |
|------|------|-----|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | 0    | Х   | Lock-Down(1)<br>(temporary/Volatile)              | Status Register is locked by standard status register write command and can not be written to again until the next power-down, power-up cycle. |
| 1    | 1    | Х   | One Time Program(2)<br>(Permanently/Non-Volatile) | Status Register is permanently locked by special command flow*and can not be written to.                                                       |

#### Note:

- 1. When SRP1=1, a power-down, power-up cycle will change SRP1=0 state.
- 2. Special One Time Protection feature is available upon special order; please contact Giantec for details.

#### **8.3 STATUS REGISTER 3**



Status Register-3

#### 8.3.1 /HOLD or /RESET Pin Function (HOLD/RST)

The HOLD/RST bit is used to determine whether /HOLD or /RESET function should be implemented on the hardware pin for 8-pin packages. When HOLD/RST=0 (factory default for part numbers with ordering options "IM" & "JM"), the pin acts as /HOLD; when HOLD/RST=1, the pin acts as /RESET( factory default for part numbers with ordering options "IR"). However, /HOLD or /RESET functions are only available when QE=0. If QE is set to 1, the /HOLD and /RESET functions are disabled, the pin acts as a dedicated data I/O pin.



#### 8.3.2 Output Driver Strength (DRV1, DRV0)

The DRV1 & DRV0 bits are used to determine the output driver strength for the Read operations. Users can adjust this output drive strength according to the actual application voltage to achieve the best voltage/communication rate adaptation effect. Please contact Giantec for Giantec Nor flash Application note.

| DRV1 | DRV0 | Driver Strength |
|------|------|-----------------|
| 0    | 0    | 100%            |
| 0    | 1    | 75%             |
| 1    | 0    | 50%             |
| 1    | 1    | 25%             |

#### 8.3.3 Write Protect Selection (WPS)

The WPS bit is used to select which Write Protect scheme should be used. When WPS=0, the device will use the combination of CMP, SEC, TB, BP[2:0] bits to protect a specific area of the memory array. When WPS=1, the device will utilize the Individual Block Locks to protect any individual sector or blocks. The default value for all Individual Block Lock bits is 1 upon device power on or after reset.

#### 8.3.4 Reserved Bits - Non Functional

There are a few reserved Status Register bits that may be read out as a "0" or "1". It is recommended to ignore the values of those bits. During a "Write Status Register" instruction, the Reserved Bits can be written as "0", but there will not be any effects.



#### 8.4 Status Register Memory Protection (CMP = 0)

Table1

| S   | TATUS | REGIS | STER(1 | )   |             | GT25Q64A-S (64M-BIT) MEMORY | PROTECTION(2) |              |
|-----|-------|-------|--------|-----|-------------|-----------------------------|---------------|--------------|
| SEC | ТВ    | BP2   | BP1    | BP0 | BLOCK(S)    | ADDRESSES                   | DENSITY       | PORTION      |
| Х   | Х     | 0     | 0      | 0   | NONE        | NONE                        | NONE          | NONE         |
| 0   | 0     | 0     | 0      | 1   | 126 and 127 | 7E0000h – 7FFFFh            | 128KB         | Upper 1/64   |
| 0   | 0     | 0     | 1      | 0   | 124 and 127 | 7C0000h – 7FFFFh            | 256KB         | Upper 1/32   |
| 0   | 0     | 0     | 1      | 1   | 120 and 127 | 780000h – 7FFFFFh           | 512KB         | Upper 1/16   |
| 0   | 0     | 1     | 0      | 0   | 112 and 127 | 700000h – 7FFFFFh           | 1MB           | Upper 1/8    |
| 0   | 0     | 1     | 0      | 1   | 96 and 127  | 600000h – 7FFFFFh           | 2MB           | Upper 1/4    |
| 0   | 0     | 1     | 1      | 0   | 64 and 127  | 400000h – 7FFFFFh           | 4MB           | Upper 1/2    |
| 0   | 1     | 0     | 0      | 1   | 0 and 1     | 000000h – 01FFFFh           | 128KB         | Lower 1/64   |
| 0   | 1     | 0     | 1      | 0   | 0 thru 3    | 000000h – 03FFFFh           | 256KB         | Lower 1/32   |
| 0   | 1     | 0     | 1      | 1   | 0 thru 7    | 000000h – 07FFFFh           | 512KB         | Lower 1/16   |
| 0   | 1     | 1     | 0      | 0   | 0 thru 15   | 000000h – 0FFFFFh           | 1MB           | Lower 1/8    |
| 0   | 1     | 1     | 0      | 1   | 0 thru 31   | 000000h – 1FFFFFh           | 2MB           | Lower 1/4    |
| 0   | 1     | 1     | 1      | 0   | 0 thru 63   | 000000h – 3FFFFFh           | 4MB           | Lower 1/2    |
| Х   | Х     | 1     | 1      | 1   | 0 thru 127  | 000000h – 7FFFFFh           | 8MB           | ALL          |
| 1   | 0     | 0     | 0      | 1   | 127         | 7FF000h – 7FFFFFh           | 4KB           | Upper 1/2048 |
| 1   | 0     | 0     | 1      | 0   | 127         | 7FE000h – 7FFFFFh           | 8KB           | Upper 1/1024 |
| 1   | 0     | 0     | 1      | 1   | 127         | 7FC000h – 7FFFFFh           | 16KB          | Upper 1/512  |
| 1   | 0     | 1     | 0      | Х   | 127         | 7F8000h – 7FFFFFh           | 32KB          | Upper 1/256  |
| 1   | 1     | 0     | 0      | 1   | 0           | 000000h – 000FFFh           | 4KB           | Lower 1/2048 |
| 1   | 1     | 0     | 1      | 0   | 0           | 000000h – 001FFFh           | 8KB           | Lower 1/1024 |
| 1   | 1     | 0     | 1      | 1   | 0           | 000000h – 003FFFh           | 16KB          | Lower 1/512  |
| 1   | 1     | 1     | 0      | Х   | 0           | 000000h – 007FFFh           | 32KB          | Lower 1/256  |

#### Notes:

<sup>1.</sup> X = don't care

<sup>2.</sup> If any Erase or Program command specifies a memory region that contains protected data portion, this command will be ignored.

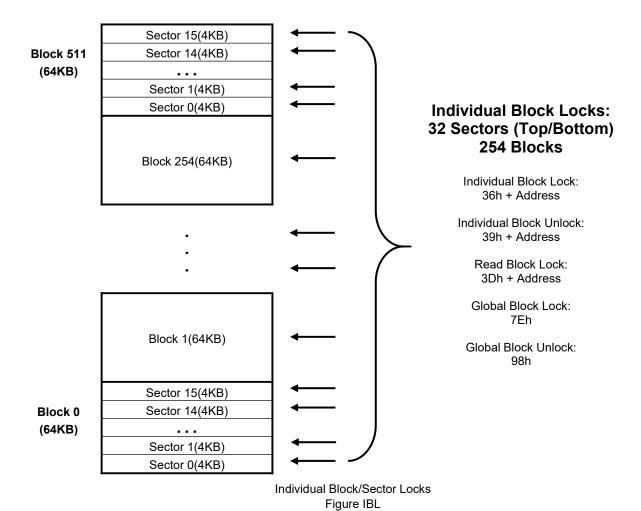


#### 8.5 Status Register Memory Protection (CMP = 1)

Table2

| S   | TATUS | REGIS | STER(1 | )   |            | GT25Q64A-S (64M-BIT) MEMORY | PROTECTION(2 | 2)              |
|-----|-------|-------|--------|-----|------------|-----------------------------|--------------|-----------------|
| SEC | ТВ    | BP2   | BP1    | BP0 | BLOCK(S)   | ADDRESSES                   | DENSITY      | PORTION         |
| Х   | Х     | 0     | 0      | 0   | 0 thru 63  | 000000h – 7FFFFFh           | ALL          | ALL             |
| 0   | 0     | 0     | 0      | 1   | 0 thru 62  | 000000h – 7DFFFFh           | 8064KB       | Lower 63/64     |
| 0   | 0     | 0     | 1      | 0   | 0 thru 61  | 000000h – 7BFFFFh           | 7936KB       | Lower 31/32     |
| 0   | 0     | 0     | 1      | 1   | 0 thru 59  | 000000h – 77FFFFh           | 7680KB       | Lower 15/16     |
| 0   | 0     | 1     | 0      | 0   | 0 thru 55  | 000000h – 6FFFFFh           | 7MB          | Lower 7/8       |
| 0   | 0     | 1     | 0      | 1   | 0 thru 47  | 000000h – 5FFFFFh           | 5MB          | Lower 3/4       |
| 0   | 0     | 1     | 1      | 0   | 0 thru 31  | 000000h – 3FFFFFh           | 4MB          | Lower 1/2       |
| 0   | 1     | 0     | 0      | 1   | 1 thru 63  | 020000h – 7FFFFFh           | 8064KB       | Upper 63/64     |
| 0   | 1     | 0     | 1      | 0   | 2 thru 63  | 040000h – 7FFFFFh           | 7936KB       | Upper 31/32     |
| 0   | 1     | 0     | 1      | 1   | 4 thru 63  | 080000h – 7FFFFFh 7680KB    |              | Upper 15/16     |
| 0   | 1     | 1     | 0      | 0   | 8 thru 63  | 100000h – 7FFFFFh           | 7MB          | Upper 7/8       |
| 0   | 1     | 1     | 0      | 1   | 16 thru 63 | 200000h – 7FFFFFh           | 5MB          | Upper 3/4       |
| 0   | 1     | 1     | 1      | 0   | 32 thru 63 | 400000h – 7FFFFFh           | 4MB          | Upper 1/2       |
| Х   | Х     | 1     | 1      | 1   | NONE       | NONE                        | NONE         | NONE            |
| 1   | 0     | 0     | 0      | 1   | 0 thru 63  | 000000h – 7FEFFFh           | 8188KB       | Lower 2047/2048 |
| 1   | 0     | 0     | 1      | 0   | 0 thru 63  | 000000h – 7FDFFFh           | 8184KB       | Lower 1023/1024 |
| 1   | 0     | 0     | 1      | 1   | 0 thru 63  | 000000h – 7FBFFFh           | 8176KB       | Lower 511/512   |
| 1   | 0     | 1     | 0      | Х   | 0 thru 63  | 000000h – 7F7FFFh           | 8160KB       | Lower 255/256   |
| 1   | 1     | 0     | 0      | 1   | 0 thru 63  | 001000h – 7FFFFFh           | 8188KB       | Upper 2047/2048 |
| 1   | 1     | 0     | 1      | 0   | 0 thru 63  | 002000h – 7FFFFFh           | 8184KB       | Upper 1023/1024 |
| 1   | 1     | 0     | 1      | 1   | 0 thru 63  | 004000h – 7FFFFFh           | 8176KB       | Upper 511/512   |
| 1   | 1     | 1     | 0      | Х   | 0 thru 63  | 008000h – 7FFFFFh           | 8160KB       | Upper 255/256   |

#### Notes:


<sup>1.</sup> X = don't care

<sup>2.</sup> If any Erase or Program command specifies a memory region that contains protected data portion, this command will be ignored.





#### 8.6 Individual Block Memory Protection (WPS=1)



#### Notes:

- 1. Individual Block/Sector protection is only valid when WPS=1.
- 2. All individual block/sector lock bits are set to 1 by default after power up, all memory array is protected.



#### 9 Commands DESCRIPTION

The Standard/Dual/Quad SPI instruction set of the GT25Q64A-S consists of 48 basic instructions that are fully controlled through the SPI bus (see Instruction Set Table1-2). Instructions are initiated with the falling edge of Chip Select (/CS). The first byte of data clocked into the DI input provides the instruction code. Data on the DI input is sampled on the rising edge of clock with most significant bit (MSB) first.

The QPI instruction set of the GT25Q64A-S consists of 35 basic instructions that are fully controlled through the SPI bus (see Instruction Set Table 3). Instructions are initiated with the falling edge of Chip Select (/CS). The first byte of data clocked through IO[3:0] pins provides the instruction code. Data on all four IO pins are sampled on the rising edge of clock with most significant bit (MSB) first. All QPI instructions, addresses, data and dummy bytes are using all four IO pins to transfer every byte of data with every two serial clocks (CLK).

Instructions vary in length from a single byte to several bytes and may be followed by address bytes, data bytes, dummy bytes (don't care), and in some cases, a combination. Instructions are completed with the rising edge of edge /CS. Clock relative timing diagrams for each instruction are included in Figures 1 through 45. All read instructions can be completed after any clocked bit. However, all instructions that Write, Program or Erase must complete on a byte boundary (/CS driven high after a full 8-bits have been clocked) otherwise the instruction will be ignored. This feature further protects the device from inadvertent writes. Additionally, while the memory is being programmed or erased, or when the Status Register is being written, all instructions except for Read Status Register will be ignored until the program or erase cycle has completed.

#### 9.1 Commands Table

#### 9.1.1 Instruction Set Table 1(Standard/Dual/Quad SPI, 3-Byte Address Mode)(1)

| Command Name               | Byte 1  | Byte 2                  | Byte 3     | Byte 4    | Byte 5                   | Byte6                | Byte N     |
|----------------------------|---------|-------------------------|------------|-----------|--------------------------|----------------------|------------|
| Write Enable               | 06h     |                         |            |           |                          |                      |            |
| Volatile SR Write Enable   | 50h     |                         |            |           |                          |                      |            |
| Write Disable              | 04h     |                         |            |           |                          |                      |            |
| Release Power-down / ID    | ABh     | Dummy                   | Dummy      | Dummy     | (ID7-ID0) <sup>(2)</sup> |                      |            |
| Manufacturer/Device ID     | 90h     | Dummy                   | Dummy      | 00h       | (MF7-MF0)                | (ID7-ID0)            |            |
| JEDEC ID                   | 9Fh     | (MF7-MF0)               | (ID15-ID8) | (ID7-ID0) |                          |                      |            |
| Read Unique ID             | 4Bh     | Dummy                   | Dummy      | Dummy     | Dummy                    | (UID <sup>2</sup>    | 127-0)     |
| Read Data                  | 03h     | A23-A16                 | A15-A8     | A7-A0     | (D7-D0)                  |                      | continuous |
| Fast Read                  | 0Bh     | A23-A16                 | A15-A8     | A7-A0     | Dummy                    | (D7-D0)              | continuous |
| Page Program               | 02h     | A23-A16                 | A15-A8     | A7-A0     | D7-D0                    | D7-D0 <sup>(3)</sup> | continuous |
| Mini Sector Erase (2KB)    | 82h     |                         |            |           |                          |                      |            |
| Sector Erase (4KB)         | 20h     | A23-A16                 | A15-A8     | A7-A0     |                          |                      |            |
| Block Erase (32KB)         | 52h     | A23-A16                 | A15-A8     | A7-A0     |                          |                      |            |
| Block Erase (64KB)         | D8h     | A23-A16                 | A15-A8     | A7-A0     |                          |                      |            |
| Chip Erase                 | C7h/60h |                         |            |           |                          |                      |            |
| Read Status Register-1     | 05h     | (S7-S0) <sup>(2)</sup>  |            |           |                          |                      |            |
| Write Status Register-1(4) | 01h     | (S7-S0) <sup>(4)</sup>  |            |           |                          |                      |            |
| Read Status Register-2     | 35h     | (S15-S8) <sup>(2)</sup> |            |           |                          |                      |            |
| Write Status Register-2    | 31h     | (S15-S8)                |            |           |                          |                      |            |



| Command Name              | Byte 1 | Byte 2                   | Byte 3 | Byte 4 | Byte 5  | Byte6                  | Byte7      |
|---------------------------|--------|--------------------------|--------|--------|---------|------------------------|------------|
| Read Status Register-3    | 15h    | (S23-S16) <sup>(2)</sup> |        |        |         |                        |            |
| Write Status Register-3   | 11h    | (S23-S16)                |        |        |         |                        |            |
| Read SFDP Register        | 5Ah    | A23-A16                  | A15-A8 | A7-A0  | Dummy   | (D7-D0)                | continuous |
| Erase Security Register   | 44h    | A23-A16                  | A15-A8 | A7-A0  |         |                        |            |
| Program Security Register | 42h    | A23-A16                  | A15-A8 | A7-A0  | (D7-D0) | (D7-D0) <sup>(3)</sup> |            |
| Read Security Register    | 48h    | A23-A16                  | A15-A8 | A7-A0  | Dummy   | (D7-D0)                | continuous |
| Global Block Lock         | 7Eh    |                          |        |        |         |                        |            |
| Global Block Unlock       | 98h    |                          |        |        |         |                        |            |
| Read Block Lock           | 3Dh    | A23-A16                  | A15-A8 | A7-A0  | (L7-L0) |                        |            |
| Individual Block Lock     | 36h    | A23-A16                  | A15-A8 | A7-A0  |         |                        |            |
| Individual Block Unlock   | 39h    | A23-A16                  | A15-A8 | A7-A0  |         |                        |            |
| Erase / Program Suspend   | 75h    |                          |        |        |         |                        |            |
| Erase / Program Resume    | 7Ah    |                          |        |        |         |                        |            |
| Power-down                | B9h    |                          |        |        |         |                        |            |
| Enter QPI Mode            | 38h    |                          |        |        |         |                        |            |
| Enable Reset              | 66h    |                          |        |        |         |                        |            |
| Reset Device              | 99h    |                          |        |        |         |                        |            |
|                           |        |                          |        |        |         |                        |            |

#### 9.1.2 Instruction Set Table 2 (Dual/Quad SPI Instructions)

| Command Name             | Byte 1 | Byte 2                 | Byte 3 | Byte 4                    | Byte 5                             | Byte6                              | Byte 7                 |
|--------------------------|--------|------------------------|--------|---------------------------|------------------------------------|------------------------------------|------------------------|
| Fast Read Dual Output    | 3Bh    | A23-A16 <sup>(5)</sup> | A15-A8 | A7-A0                     | Dummy<br>(8clocks)                 | (D7-D0) <sup>(6)</sup>             |                        |
| Mftr./Device ID Dual I/O | 92h    | A23-A16 <sup>(5)</sup> | A15-A8 | 00                        | (MF7-MF0)                          | (ID7-ID0) <sup>(6)</sup>           |                        |
| Fast Read Dual I/O       | BBh    | A23-A16 <sup>(5)</sup> | A15-A8 | A7-A0                     | M7-M0                              | (D7-D0) <sup>(6)</sup>             |                        |
| Manufacturer/Device ID   | 90h    | Dummy                  | Dummy  | 00h                       | (MF7-MF0)                          | (ID7-ID0)                          |                        |
| Quad Input Page Program  | 32h    | A23-A16 <sup>(7)</sup> | A15-A8 | A7-A0                     | Dummy<br>(8clocks)                 | (D7-D0) <sup>(8)</sup>             |                        |
| Fast Read Quad Output    | 6Bh    | A23-A16 <sup>(7)</sup> | A15-A8 | (MF7-MF0) <sup>(13)</sup> | Dummy <sup>(13)</sup><br>(4clocks) | (ID7-ID0) <sup>(8)</sup>           |                        |
| Mftr./Device ID Quad I/O | 94h    | A23-A16 <sup>(7)</sup> | A15-A8 | A7-A0                     | (MF7-MF0) <sup>(13)</sup>          | Dummy <sup>(11)</sup><br>(4clocks) | (D7-D0) <sup>(9)</sup> |
| Fast Read Quad I/O       | EBh    | Dummy                  | Dummy  | Dummy                     | W6-W4 <sup>(7)</sup>               |                                    |                        |
| Set Burst with Wrap      | 77h    | A23-A16 <sup>(5)</sup> | A15-A8 | A7-A0                     | Dummy<br>(8clocks)                 | (D7-D0) <sup>(6)</sup>             |                        |



#### 9.1.3 Instruction Set Table 5(QPI Instructions)

| Command Name                  | Byte 1  | Byte 2                    | Byte 3     | Byte 4    | Byte 5                   | Byte6                  | Byte 7     |
|-------------------------------|---------|---------------------------|------------|-----------|--------------------------|------------------------|------------|
| Write Enable                  | 06h     |                           |            |           |                          |                        |            |
| Volatile SR Write Enable      | 50h     |                           |            |           |                          |                        |            |
| Write Disable                 | 04h     |                           |            |           |                          |                        |            |
| Release Power-down / ID       | ABh     | Dummy                     | Dummy      | Dummy     | (ID7-ID0) <sup>(2)</sup> |                        |            |
| Manufacturer/Device ID        | 90h     | Dummy                     | Dummy      | 00h       | (MF7-MF0)                | (ID7-ID0)              |            |
| JEDEC ID                      | 9Fh     | (MF7-MF0)                 | (ID15-ID8) | (ID7-ID0) |                          |                        |            |
| Set Read Parameters C0h P7-P0 | C0h     | P7-P0 <sup>(11)(12)</sup> |            |           |                          |                        |            |
| Fast Read                     | 0Bh     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     | Dummy <sup>(11)</sup>    | (D7-D0)                | continuous |
| Burst Read with Wrap          | 0Ch     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     | Dummy <sup>(11)</sup>    | (D7-D0)                | continuous |
| Fast Read Quad I/O            | EBh     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     | M7-M0 <sup>(13)</sup>    | (D7-D0)                | continuous |
| Page Program                  | 02h     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     | (D7-D0) <sup>(3)</sup>   | (D7-D0) <sup>(3)</sup> | continuous |
| Sector Erase (4KB)            | 20h     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     |                          |                        |            |
| Block Erase (32KB)            | 52h     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     |                          |                        |            |
| Block Erase (64KB)            | D8h     | A23-A16 <sup>(10)</sup>   | A15-A8     | A7-A0     |                          |                        |            |
| Chip Erase                    | C7h/60h |                           |            |           |                          |                        |            |
| Read Status Register-1        | 05h     | (S7-S0) <sup>(2)</sup>    |            |           |                          |                        |            |
| Write Status Register-1(4)    | 01h     | (S7-S0) <sup>(4)</sup>    |            |           |                          |                        |            |
| Read Status Register-2        | 35h     | (S15-S8) <sup>(2)</sup>   |            |           |                          |                        |            |
| Write Status Register-2       | 31h     | (S15-S8)                  |            |           |                          |                        |            |
| Read Status Register-3        | 15h     | (S23-S16) <sup>(2)</sup>  |            |           |                          |                        |            |
| Write Status Register-3       | 11h     | (S23-S16)                 |            |           |                          |                        |            |
| Global Block Lock             | 7Eh     |                           |            |           |                          |                        |            |
| Global Block Unlock           | 98h     |                           |            |           |                          |                        |            |
| Read Block Lock               | 3Dh     | A23-A16                   | A15-A8     | A7-A0     | (L7-L0)                  |                        |            |
| Individual Block Lock         | 36h     | A23-A16                   | A15-A8     | A7-A0     |                          |                        |            |
| Individual Block Unlock       | 39h     | A23-A16                   | A15-A8     | A7-A0     |                          |                        |            |
| Erase / Program Suspend       | 75h     |                           |            |           |                          |                        |            |
| Erase / Program Resume        | 7Ah     |                           |            |           |                          |                        |            |
| Power-down                    | B9h     |                           |            |           |                          |                        |            |
| Enable Reset                  | 66h     |                           |            |           |                          |                        |            |
| Reset Device                  | 99h     |                           |            |           |                          |                        |            |
| Exit QPI Mode                 | FFh     |                           |            |           |                          |                        |            |



#### **9.1.4** Instruction Set Table 7 (DTR with SPI Instructions)

| Command Name           | Byte 1 | Byte 2  | Byte 3 | Byte 4 | Byte 5             | Byte6              | Byte 7  |
|------------------------|--------|---------|--------|--------|--------------------|--------------------|---------|
| DTR Fast Read          | 0Dh    | A23-A16 | A15-A8 | A7-A0  | Dummy<br>(6clocks) | (D7-D0)            |         |
| DTR Fast Read Dual I/O | BDh    | A23-A16 | A15-A8 | A7-A0  | M7-M0              | Dummy<br>(4clocks) | (D7-D0) |
| DTR Fast Read Quad I/O | EDh    | A23-A16 | A15-A8 | A7-A0  | M7-M0              | Dummy<br>(7clocks) | (D7-D0) |

#### 9.1.5 Instruction Set Table 9 (DTR with QPI Instructions)

| Command Name       | Byte 1 | Byte 2  | Byte 3 | Byte 4 | Byte 5             | Byte6              | Byte 7  |
|--------------------|--------|---------|--------|--------|--------------------|--------------------|---------|
| DTR Read with Wrap | 0Eh    | A23-A16 | A15-A8 | A7-A0  | Dummy<br>(8clocks) | (D7-D0)            |         |
| DTR Fast Read      | 0Dh    | A23-A16 | A15-A8 | A7-A0  | Dummy<br>(8clocks) | (D7-D0)            |         |
| DTR Fast Read      | EDh    | A23-A16 | A15-A8 | A7-A0  | M7-M0              | Dummy<br>(7clocks) | (D7-D0) |

#### NOTE:

- Data bytes are shifted with Most Significant Bit first. Byte fields with data in parenthesis "()" indicate data output from the device on either 1, 2 or 4 IO pins.
- The Status Register contents and Device ID will repeat continuously until /CS terminates the instruction. 2.
- At least one byte of data input is required for Page Program, Quad Page Program and Program Security Registers, up to 256 bytes of data input. If more than 256 bytes of data are sent to the device, the addressing will wrap to the beginning of the page and overwrite previously sent data.
- 4. Write Status Register-1 (01h) can also be used to program Status Register-1&2, see section 9.7.
- Dual SPI address input format:

IO0 = A22, A20, A18, A16, A14, A12, A10, A8 A6, A4, A2, A0, M6, M4, M2, M0 IO1 = A23, A21, A19, A17, A15, A13, A11, A9 A7, A5, A3, A1, M7, M5, M3, M1

**Dual Output data** 6.

> IO0 = (D6, D4, D2, D0) IO1 = (D7, D5, D3, D1)

7. Quad SPI address input format:

> IO0 = A20, A16, A12, A8, A4, A0, M4, M0 IO1 = A21, A17, A13, A9, A5, A1, M5, M1 IO2 = A22, A18, A14, A10, A6, A2, M6, M2

> IO3 = A23, A19, A15, A11, A7, A3, M7, M3

**Quad Output Data** 

IO0 = (D4, D0, ....)

IO1 = (D5, D1, ....)

IO2 = (D6, D2, ....)

IO3 = (D7, D3,....)

9. Fast Read Quad I/O Data

IO0 = (x, x, x, x, D4, D0, D4, D0)

IO1 = (x, x, x, x, D5, D1, D5, D1)

IO2 =(x, x, x, x, D6, D2, D6, D2)

IO3 = (x, x, x, x, D7, D3, D7, D3)

Set Burst with Wrap input format:

100 = x, x, x, x, x, x, W4, x

IO1 = x, x, x, x, x, x, W5, x

102 = x, x, x, x, x, x, W6, x

103 = x, x, x, x, x, x, x, x



| 10. | QPI Comma | and, A | Address | , Data | input/c | output f | ormat: |     |    |    |    |    |    |    |
|-----|-----------|--------|---------|--------|---------|----------|--------|-----|----|----|----|----|----|----|
|     | CLK       | #      | 0       | 1      | 2       | 3        | 4      | 5   | 6  | 7  | 8  | 9  | 10 | 11 |
|     | 100       | =      | C4      | C0     | A20     | A16      | A12    | A8  | A4 | A0 | D4 | D0 | D4 | D0 |
|     | IO1       | =      | C5      | C1     | A21     | A17      | A13    | A9  | A5 | A1 | D5 | D1 | D5 | D1 |
|     | 102       | =      | C6      | C2     | A22     | A18      | A14    | A10 | A6 | A2 | D6 | D2 | D6 | D2 |
|     | 103       | =      | C7      | C3     | A23     | A19      | A15    | A11 | Α7 | A3 | D7 | D3 | D7 | D3 |

- 11. The number of dummy clocks for QPI Fast Read, QPI Fast Read Quad I/O & QPI Burst Read with Wrap is controlled by read parameter P5 P4.
- 12. The wrap around length for QPI Burst Read with Wrap is controlled by read parameter P1 P0.
- 13. The first dummy is M7-M0 should be set to Fxh; if not use Read Command Bypass Mode.

#### 9.2 Manufacturer and Device Identification

| Command | M7-M0 | ID15-ID8 | ID7-ID0 |
|---------|-------|----------|---------|
| 9FH     | C4h   | 60       | 17      |
| 90H     | C4h   |          | 16      |
| ABH     |       |          | 16      |



#### 9.3 Write Enable (WREN) (06h)

The Write Enable (WREN) command is for setting the Write Enable Latch (WEL) bit. The Write Enable Latch (WEL) bit must be set prior to every Page Program (PP), Sector Erase (SE), Block Erase (BE), Chip Erase (CE), Write Status Register (WRSR) and Erase/Program Security Registers command. The Write Enable (WREN) command sequence: CS# goes low →sending the Write Enable command → CS# goes high.

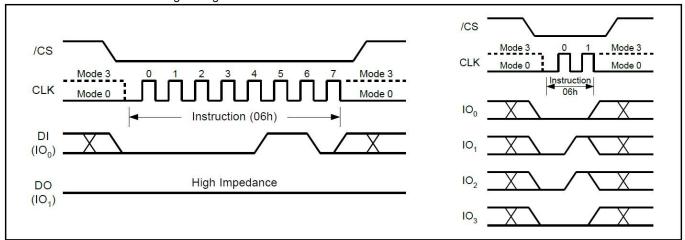



Figure 1 Write Enable Sequence Diagram for SPI mode(left) or QPI Mode(Right)

#### 9.4 Write Disable (WRDI) (04h)

The Write Disable command is for resetting the Write Enable Latch (WEL) bit. The Write Disable command sequence: CS# goes low →Sending the Write Disable command →CS# goes high. The WEL bit is reset by following condition: Power-up and upon completion of the Write Status Register, Page Program, Sector Erase, Block Erase, Chip Erase, Erase/Program Security Registers and Reset commands.

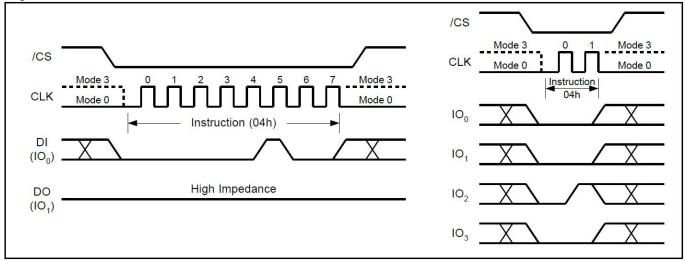



Figure 2. Write Disable Sequence Diagram for SPI mode(left) or QPI Mode(Right)



#### 9.5 Write Enable for Volatile Status Register (50h)

The non-volatile Status Register bits can also be written to as volatile bits. This gives more flexibility to change the system configuration and memory protection schemes quickly without waiting for the typical non-volatile bit write cycles or affecting the endurance of the Status Register non-volatile bits. The Write Enable for Volatile Status Register command must be issued prior to a Write Status Register command and any other commands can't be inserted between them. Otherwise, Write Enable for Volatile Status Register will be cleared. The Write Enable for Volatile Status Register command will not set the Write Enable Latch bit, it is only valid for the Write Status Register command to change the volatile Status Register bit values.

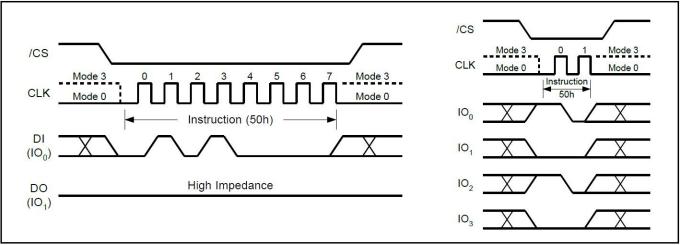



Figure 3. Write Enable for Volatile Status Register Sequence Diagram for SPI mode(left) or QPI Mode(Right)



#### 9.6 Read Status Register (05h/35h/15h)

The Read Status Register instructions allow the 8-bit Status Registers to be read. The instruction is entered by driving /CS low and shifting the instruction code "05h" for Status Register-1 or "35h" for Status Register-2 or "15h" for Status Register-3 into the DI pin on the rising edge of CLK. The status register bits are then shifted out on the DO pin at the falling edge of CLK with most significant bit (MSB) first as shown in figure 4. The Status Register bits are shown in Status register1/2/3 include the BUSY, WEL, BP2-BP0, TB, SEC, SRP, SRL, QE, LB[3:0], CMP, SUS, and DRV1/DRV0 bits (see Status Register section earlier in this datasheet).

The Read Status Register instruction may be used at any time, even while a Program, Erase or Write Status Register cycle is in progress. This allows the BUSY status bit to be checked to determine when the cycle is complete and if the device can accept another instruction. The Status Register can be read continuously, as shown in Figure 4. The instruction is completed by driving /CS high.

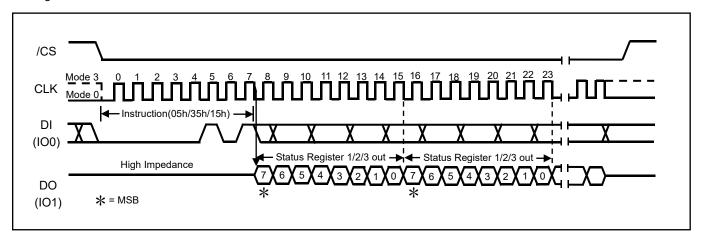



Figure4a. Read Status Register Sequence Diagram for SPI mode

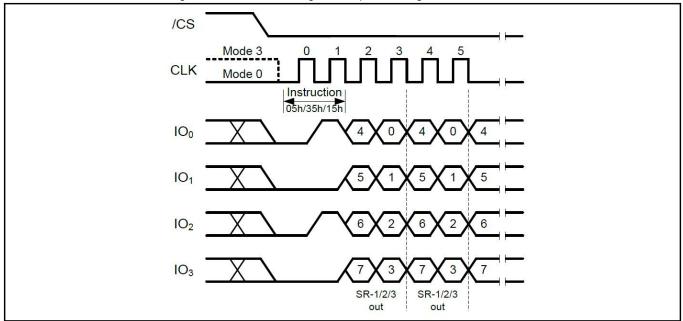



Figure4b. Read Status Register Sequence Diagram for QPI Mode



#### 9.7 Write Status Register (WRSR) (01h/31h/11h)

The Write Status Register instruction allows the Status Registers to be written. The writable Status Register bits include: SRP, SEC, TB, BP[2:0] in Status Register-1; CMP, LB[3:1], QE, SRL in Status Register-2; DRV1, DRV0, & WPS in Status Register-3. All other Status Register bit locations are read-only and will not be affected by the Write Status Register instruction. LB[3:1] are non-volatile OTP bits, once it is set to 1, it cannot be cleared to 0.

To write non-volatile Status Register bits, a standard Write Enable (06h) instruction must previously have been executed for the device to accept the Write Status Register instruction (Status Register bit WEL must equal 1). Once write enabled, the instruction is entered by driving /CS low, sending the instruction code "01h/31h/11h", and then writing the status register data byte as illustrated in Figure 5a & 5b.

To write volatile Status Register bits, a Write Enable for Volatile Status Register (50h) instruction must have been executed prior to the Write Status Register instruction (Status Register bit WEL remains 0). However, SRL and LB[3:1] cannot be changed from "1" to "0" because of the OTP protection for these bits. Upon power off or the execution of a Software/Hardware Reset, the volatile Status Register bit values will be lost, and the non-volatile Status Register bit values will be restored.

During non-volatile Status Register write operation (06h combined with 01h/31h/11h), after /CS is driven high, the self-timed Write Status Register cycle will commence for a time duration of tW (See AC Characteristics). While the Write Status Register cycle is in progress, the Read Status Register instruction may still be accessed to check the status of the BUSY bit. The BUSY bit is a 1 during the Write Status Register cycle and a 0 when the cycle is finished and ready to accept other instructions again. After the Write Status Register cycle has finished, the Write Enable Latch (WEL) bit in the Status Register will be cleared to 0.

During volatile Status Register write operation (50h combined with 01h/31h/11h), after /CS is driven high, the Status Register bits will be refreshed to the new values within the time period of tSHSL2 (See AC Characteristics). BUSY bit will remain 0 during the Status Register bit refresh period.

The Write Status Register instruction can be used in both SPI mode and QPI mode. However, the QE bit cannot be written to when the device is in the QPI mode, because QE=1 is required for the device to enter and operate in the QPI mode.

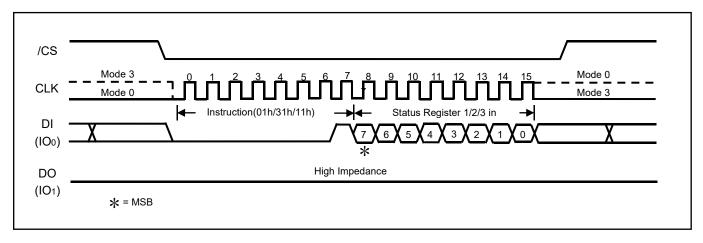



Figure5a. Write Status Register Sequence Diagram for SPI Mode



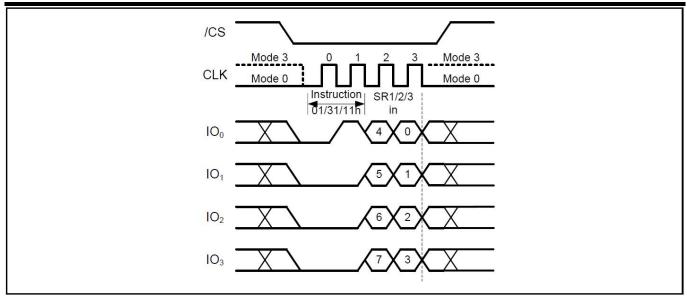



Figure 5b. Write Status Register Sequence Diagram for QPI mode

The GT25Q64A-S is also backward compatible to Giantec's previous generations of serial flash memories, in which the Status Register-1&2 can be written using a single "Write Status Register-1 (01h)" command. To complete the Write Status Register-1&2 instruction, the /CS pin must be driven high after the sixteenth bit of data that is clocked in as shown in Figure 5c & 5d. If /CS is driven high after the eighth clock, the Write Status Register-1 (01h) instruction will only program the Status Register-1, the Status Register-2 will not be affected (Previous generations will clear CMP and QE bits).

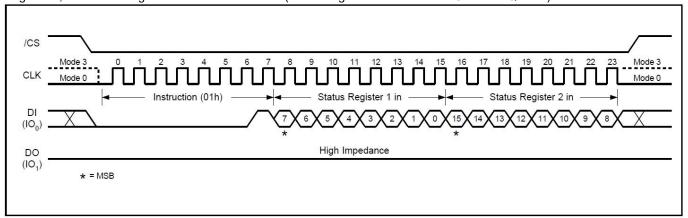



Figure5c. Write Status Register Sequence Diagram



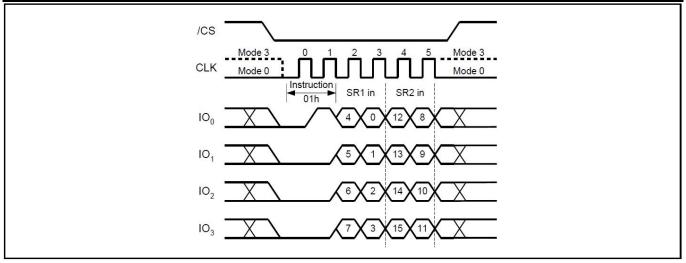



Figure5d. Write Status Register Sequence Diagram

### 9.8 Read Data Bytes (READ) (03h)

The Read Data instruction allows one or more data bytes to be sequentially read from the memory. The instruction is initiated by driving the /CS pin low and then shifting the instruction code "03h" followed by a 24-bit address (A23-A0) into the DI pin. The code and address bits are latched on the rising edge of the CLK pin. After the address is received, the data byte of the addressed memory location will be shifted out on the DO pin at the falling edge of CLK with most significant bit (MSB) first. The address is automatically incremented to the next higher address after each byte of data is shifted out allowing for a continuous stream of data. This means that the entire memory can be accessed with a single instruction as long as the clock continues. The instruction is completed by driving /CS high.

The Read Data instruction sequence is shown in Figure 6. If a Read Data instruction is issued while an Erase, Program or Write cycle is in process (BUSY=1) the instruction is ignored and will not have any effects on the current cycle. The Read Data instruction allows clock rates from D.C. to a maximum of fR (see AC Electrical Characteristics).

The Read Data (03h) instruction is only supported in Standard SPI mode.

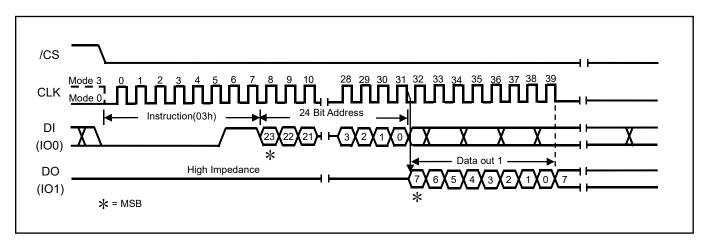



Figure 6. Read Data Bytes Sequence Diagram



### 9.9 Fast Read (0Bh)

The Fast Read instruction is similar to the Read Data instruction except that it can operate at the highest possible frequency of FR (see AC Electrical Characteristics). This is accomplished by adding eight "dummy" clocks after the 24-bit address as shown in Figure 7a. The dummy clocks allow the devices internal circuits additional time for setting up the initial address. During the dummy clocks the data value on the DO pin is a "don't care".

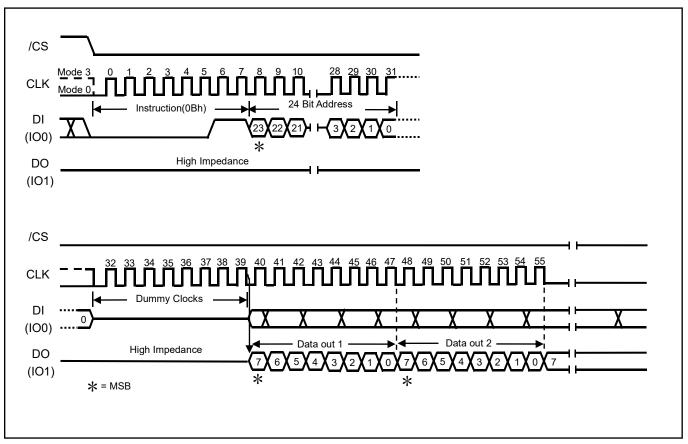



Figure 7a. Read Data Bytes at Higher Speed Sequence Diagram for SPI Mode



### Fast Read (0Bh) in QPI Mode

The Fast Read instruction is also supported in QPI mode. When QPI mode is enabled, the number of dummy clocks is configured by the "Set Read Parameters (C0h)" instruction to accommodate a wide range of applications with different needs for either maximum Fast Read frequency or minimum data access latency. Depending on the Read Parameter Bits P[5:4] setting, the number of dummy clocks can be configured as either 2, 4, 6 or 8. The default number of dummy clocks upon power up or after a Reset instruction is 2.

32-Bit Address is required when the device is operating in 4-Byte Address Mode

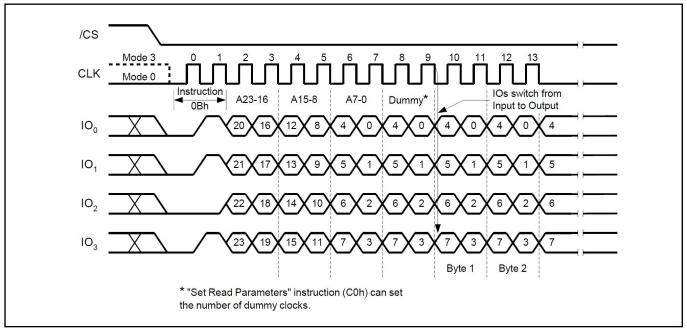



Figure 7b. Fast Read Instruction (QPI Mode)



### 9.10 DTR Fast Read (0Dh)

The DTR Fast Read instruction is similar to the Fast Read instruction except that the 24-bit address input and the data output require DTR (Double Transfer Rate) operation. This is accomplished by adding six "dummy" clocks after the 24-bit address as shown in Figure 8. The dummy clocks allow the devices internal circuits additional time for setting up the initial address. During the dummy clocks the data value on the DO pin is a "don't care".

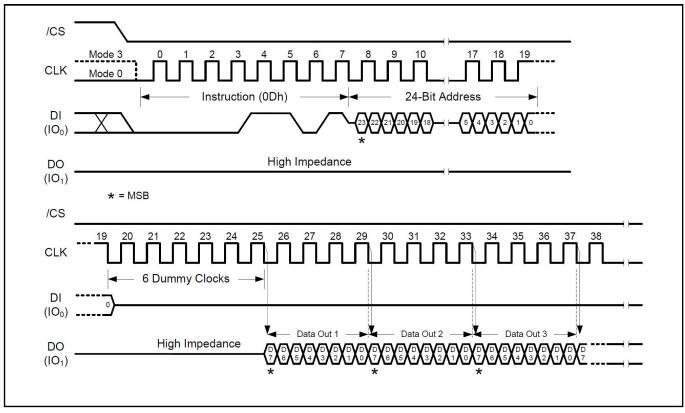



Figure 8a. DTR Fast Read Instruction (SPI Mode)



### DTR Fast Read (0Dh) in QPI Mode

The DTR Fast Read instruction is also supported in QPI mode.

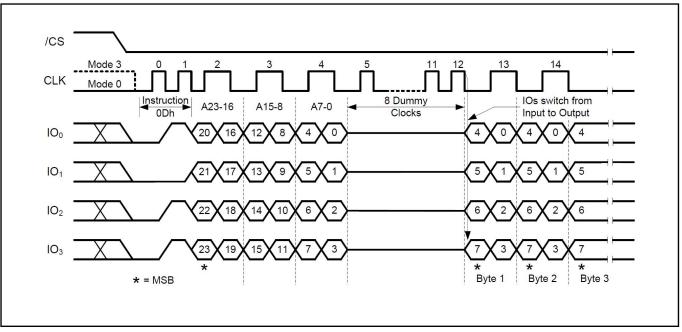



Figure 8b. DTR Fast Read Instruction (QPI Mode)



### 9.11 Dual Output Fast Read (3Bh)

The Fast Read Dual Output (3Bh) instruction is similar to the standard Fast Read (0Bh) instruction except that data is output on two pins; IO0 and IO1. This allows data to be transferred at twice the rate of standard SPI devices. The Fast Read Dual Output instruction is ideal for quickly downloading code from Flash to RAM upon power-up or for applications that cache code-segments to RAM for execution.

Similar to the Fast Read instruction, the Fast Read Dual Output instruction can operate at the highest possible frequency of FR (see AC Electrical Characteristics). This is accomplished by adding eight "dummy" clocks after the 24-bit address as shown in Figure 9. The dummy clocks allow the device's internal circuits additional time for setting up the initial address. The input data during the dummy clocks is "don't care". However, the IO0 pin should be high-impedance prior to the falling edge of the first data out clock.

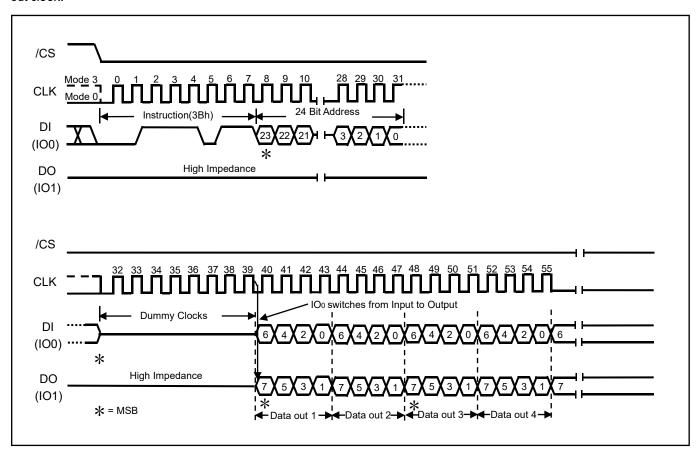



Figure 9. Dual Output Fast Read Sequence Diagram



### 9.12 Quad Output Fast Read (6Bh)

The Fast Read Quad Output (6Bh) instruction is similar to the Fast Read Dual Output (3Bh) instruction except that data is output on four pins, IO0, IO1, IO2, and IO3. The Quad Enable (QE) bit in Status Register-2 must be set to 1 before the device will accept the Fast Read Quad Output Instruction. The Fast Read Quad Output Instruction allows data to be transferred at four times the rate of standard SPI devices.

The Fast Read Quad Output instruction can operate at the highest possible frequency of FR (see AC Electrical Characteristics). This is accomplished by adding eight "dummy" clocks after the 24-bit address as shown in Figure 10. The dummy clocks allow the device's internal circuits additional time for setting up the initial address. The input data during the dummy clocks is "don't care". However, the IO pins should be high-impedance prior to the falling edge of the first data out clock.

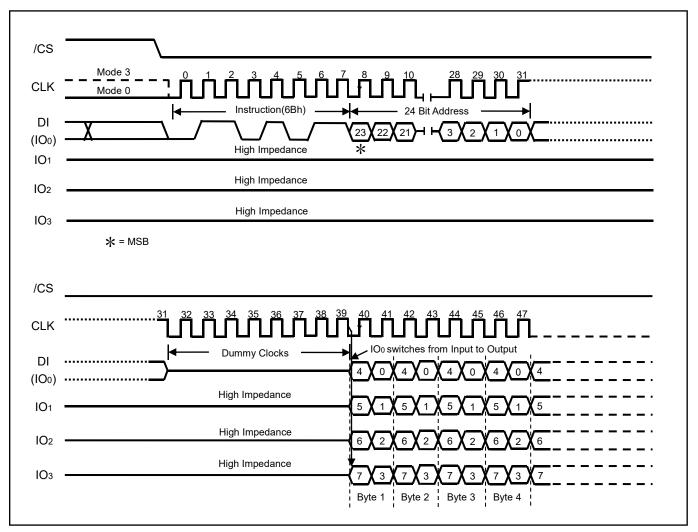



Figure 10. Quad Output Fast Read Sequence Diagram



#### 9.13 Dual I/O Fast Read (BBH)

The Fast Read Dual I/O (BBh) instruction allows for improved random access while maintaining two IO pins, IO0 and IO1. It is similar to the Fast Read Dual Output (3Bh) instruction but with the capability to input the Address bits (A23-0) two bits per clock. This reduced instruction overhead may allow for code execution (XIP) directly from the Dual SPI in some applications.

#### **Dual I/O Fast Read with "Continuous Read Mode"**

The Fast Read Dual I/O instruction can further reduce instruction overhead through setting the "Read Command Bypass Mode" bits (M7-0) after the input Address bits (A23-0), as shown in Figure 11a. The upper nibble of the (M7-4) controls the length of the next Fast Read Dual I/O instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble bits of the (M3-0) are don't care ("x"). However, the IO pins should be high-impedance prior to the falling edge of the first data out clock. If the "Read Command Bypass Mode" bits M5-4 = (1,0), then the next Fast Read Dual I/O instruction (after /CS is raised and then lowered) does not require the BBh instruction code, as shown in Figure 11b. This reduces the instruction sequence by eight clocks and allows the Read address to be immediately entered after /CS is asserted low. If the "Read Command Bypass Mode" bits M5-4 do not equal to (1,0), the next instruction (after /CS is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. It is recommended to input FFFFh on IO0 for the next instruction (16 clocks), to ensure M4 = 1 and return the device to normal operation.

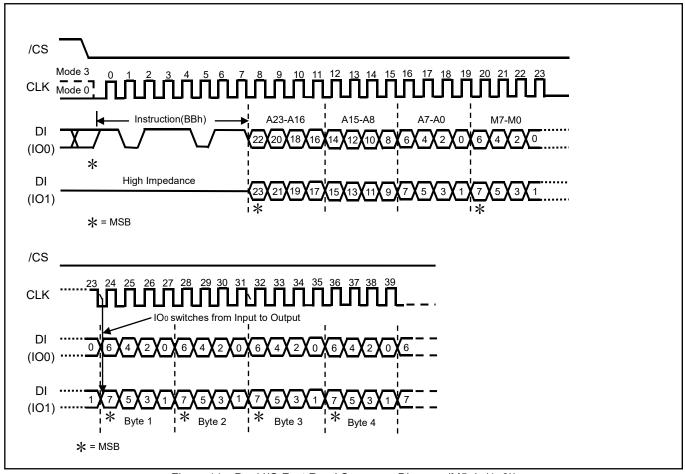



Figure 11a. Dual I/O Fast Read Sequence Diagram (M5-4≠(1, 0))



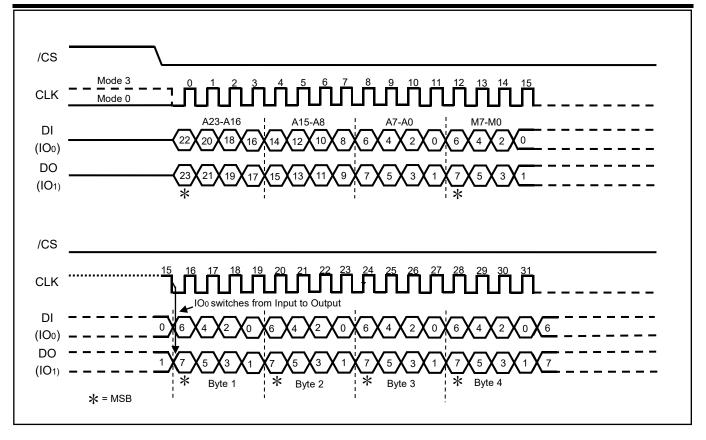



Figure 11b. Fast Read Dual I/O Instruction (Previous instruction set M5-4 = 10, SPI Mode only)



### 9.14 DTR Fast Read Dual I/O (BDh)

The DTR Fast Read Dual I/O (BDh) instruction allows for improved random access while maintaining two IO pins, IO0 and IO1. It is similar to the Fast Read Dual Output (3Bh) instruction but with the capability to input the Address bits (A23-0) two bits per clock. This reduced instruction overhead may allow for code execution (XIP) directly from the Dual SPI in some applications.

#### DTR Fast Read Dual I/O with "Continuous Read Mode"

The DTR Fast Read Dual I/O instruction can further reduce instruction overhead through setting the "Continuous Read Mode" bits (M7-0) after the input Address bits (A23-0), as shown in Figure 12a. The upper nibble of the (M7-4) controls the length of the next Fast Read Dual I/O instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble bits of the (M3-0) are don't care ("x"). However, the IO pins should be high-impedance prior to the falling edge of the first data out clock. If the "Continuous Read Mode" bits M5-4 = (1,0), then the next Fast Read Dual I/O instruction (after /CS is raised and then lowered) does not require the BBh instruction code, as shown in Figure 12b. This reduces the instruction sequence by eight clocks and allows the Read address to be immediately entered after /CS is asserted low. If the "Continuous Read Mode" bits M5-4 do not equal to (1,0), the next instruction (after /CS is raised and then lowered) requires the first byte instruction code, thus returning to normal operation.

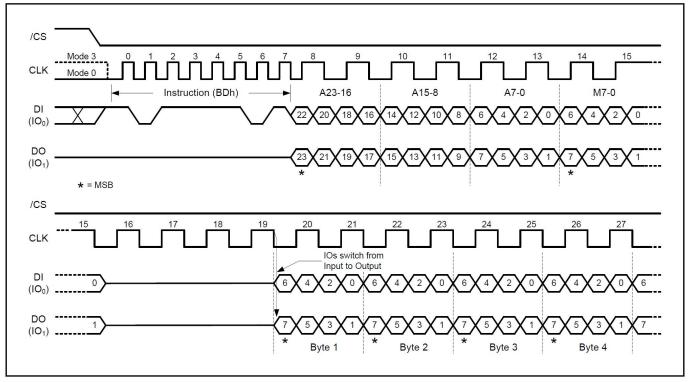



Figure 12a. DTR Fast Read Dual I/O (Initial instruction or previous M5-4≠10, SPI Mode only)





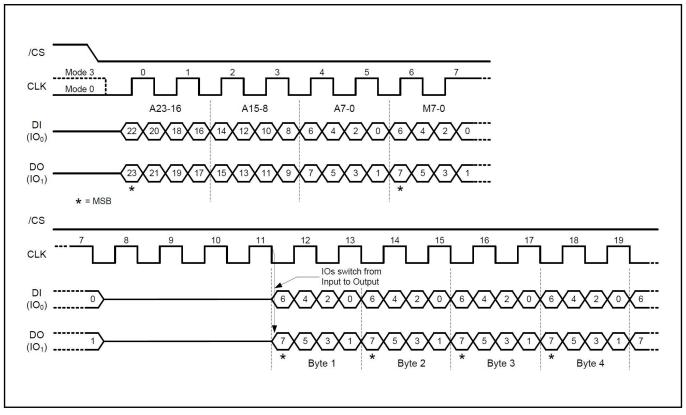



Figure 12b. DTR Fast Read Dual I/O (Previous instruction set M5-4=10, SPI Mode only)



#### 9.15 Quad I/O Fast Read (EBH)

The Fast Read Quad I/O (EBh) instruction is similar to the Fast Read Dual I/O (BBh) instruction except that address and data bits are input and output through four pins IO0, IO1, IO2 and IO3 and four Dummy clocks are required in SPI mode prior to the data output. The Quad I/O dramatically reduces instruction overhead allowing faster random access for code execution (XIP) directly from the Quad SPI. The Quad Enable bit (QE) of Status Register-2 must be set to enable the Fast Read Quad I/O Instruction.

#### Quad I/O Fast Read with "Continuous Read Mode"

The Fast Read Quad I/O instruction can further reduce instruction overhead through setting the "Continuous Read Mode" bits (M7-0) after the input Address bits (A23-0), as shown in Figure 13a. The upper nibble of the (M7-4) controls the length of the next Fast Read Quad I/O instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble bits of the (M3-0) are don't care ("x"). However, the IO pins should be high-impedance prior to the falling edge of the first data out clock.

If the "Continuous Read Mode" bits M5-4 = (1,0), then the next Fast Read Quad I/O instruction (after /CS is raised and then lowered) does not require the EBh instruction code, as shown in Figure 13b. This reduces the instruction sequence by eight clocks and allows the Read address to be immediately entered after /CS is asserted low. If the "Continuous Read Mode" bits M5-4 do not equal to (1,0), the next instruction (after /CS is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. It is recommended to input FFh on IO0 for the next instruction (8 clocks), to ensure M4 = 1 and return the device to normal operation.

32-Bit Address is required when the device is operating in 4-Byte Address Mode

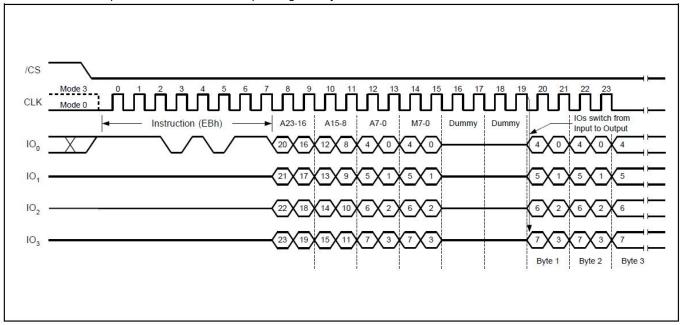



Figure 13a. Quad I/O Fast Read Sequence Diagram (M5-4±10 SPI Mode)



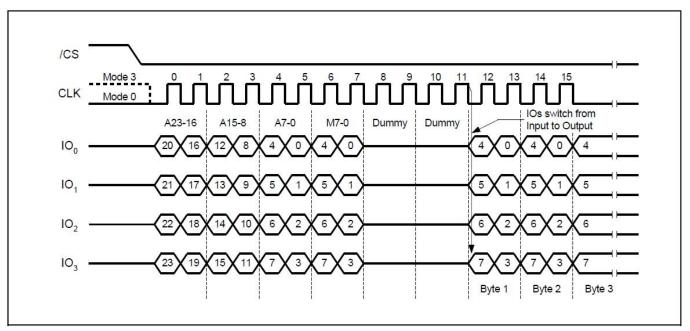



Figure 13b. Quad I/O Fast Read Sequence Diagram (M5-4= 10,SPI Mode)

#### Quad I/O Fast Read with "8/16/32/64-Byte Wrap Around" in Standard SPI mode

The Fast Read Quad I/O instruction can also be used to access a specific portion within a page by issuing a "Set Burst with Wrap" (77h) command prior to EBh. The "Set Burst with Wrap" (77h) command can either enable or disable the "Wrap Around" feature for the following EBh commands. When "Wrap Around" is enabled, the data being accessed can be limited to either an 8, 16, 32 or 64-byte section of a 256-byte page. The output data starts at the initial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-byte section, the output will wrap around to the beginning boundary automatically until /CS is pulled high to terminate the command.

The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read commands.

The "Set Burst with Wrap" instruction allows three "Wrap Bits", W6-4 to be set. The W4 bit is used to enable or disable the "Wrap Around" operation while W6-5 are used to specify the length of the wrap around section within a page. Refer to section 9.39 for detail descriptions.



#### Quad I/O Fast Read (EBH) in QPI mode

The Fast Read Quad I/O instruction is also supported in QPI mode, as shown in Figure 24c. When QPI mode is enabled, the number of dummy clocks is configured by the "Set Read Parameters (C0h)" instruction to accommodate a wide range of applications with different needs for either maximum Fast Read frequency or minimum data access latency. Depending on the Read Parameter Bits P[5:4] setting, the number of dummy clocks can be configured as either 2, 4, 6 or 8. The default number of dummy clocks upon power up or after a Reset instruction is 2. In QPI mode, the "Read Command Bypass Mode" bits M7-0 are also considered as dummy clocks. In the default setting, the data output will follow the Read Command Bypass Mode bits immediately.

"Read Command Bypass Mode" feature is also available in QPI mode for Fast Read Quad I/O instruction. Please refer to the description on previous pages.

"Wrap Around" feature is not available in QPI mode for Fast Read Quad I/O instruction. To perform a read operation with fixed data length wrap around in QPI mode, a dedicated "Burst Read with Wrap" (0Ch) instruction must be used. Please refer to 9.39 for details.



Figure 13c. Quad I/O Fast Read Sequence Diagram (M5-4≠(1, 0) QPI Mode)

#### 9.16 DTR Fast Read Quad I/O (EDh)

The DTR Fast Read Quad I/O (EDh) instruction is similar to the Fast Read Dual I/O (BBh) instruction except that address and data bits are input and output through four pins IO0, IO1, IO2 and IO3 and 7 Dummy clocks are required in SPI mode prior to the data output. The Quad I/O dramatically reduces instruction overhead allowing faster random access for code execution (XIP) directly from the Quad SPI. The Quad Enable bit (QE) of Status Register-2 must be set to enable the Fast Read Quad I/O Instruction.

#### DTR Fast Read Quad I/O with "Continuous Read Mode"

The Fast Read Quad I/O instruction can further reduce instruction overhead through setting the "Read Command Bypass Mode" bits (M7-0) after the input Address bits (A23 -0), as shown in Figure 14a. The upper nibble of the (M7-4) controls the length of the next Fast Read Quad I/O instruction through the inclusion or exclusion of the first byte instruction code. The lower nibble bits of the (M3-0) are don't care ("x"). However, the IO pins should be high-impedance prior to the falling edge of the first data out clock.

If the "Read Command Bypass Mode" bits M5-4 = (1,0), then the next Fast Read Quad I/O instruction (after /CS is raised and then lowered) does not require the EBh instruction code, as shown in Figure 24b. This reduces the instruction sequence by eight clocks and allows the Read address to be immediately entered after /CS is asserted low. If the "Read Command Bypass Mode" bits M5-4 do not equal to (1,0), the next instruction (after /CS is raised and then lowered) requires the first byte instruction code, thus returning to normal operation. It is recommended to input FFh/3FFh on IO0 for the next instruction (8/10 clocks), to ensure M4 = 1 and return the device to normal operation.

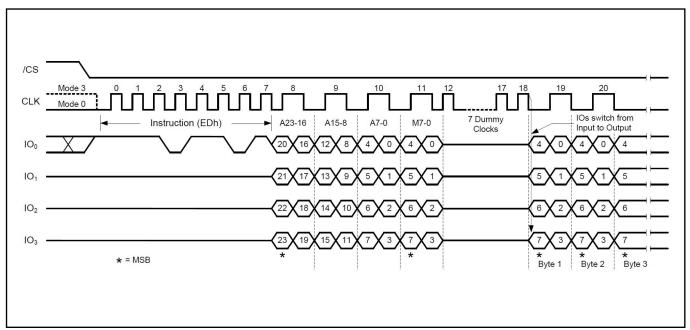



Figure 14a. DTR Fast Read Quad I/O ((M7-M0 should be set to FFh), SPI Mode)



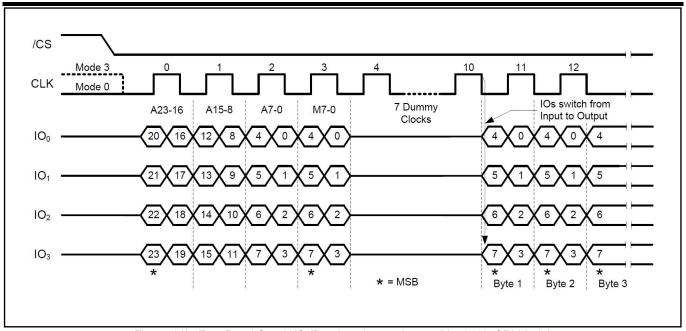



Figure 14b. Fast Read Quad I/O (Previous instruction set M5-4=10, SPI Mode)



#### DTR Fast Read Quad I/O with "8/16/32/64-Byte Wrap Around" in Standard SPI mode

The Fast Read Quad I/O instruction can also be used to access a specific portion within a page by issuing a "Set Burst with Wrap" (77h) command prior to EDh. The "Set Burst with Wrap" (77h) command can either enable or disable the "Wrap Around" feature for the following EDh commands. When "Wrap Around" is enabled, the data being accessed can be limited to either an 8, 16, 32 or 64-byte section of a 256-byte page. The output data starts at the initial address specified in the instruction, once it reaches the ending boundary of the 8/16/32/64-byte section, the output will wrap around to the beginning boundary automatically until /CS is pulled high to terminate the command.

The Burst with Wrap feature allows applications that use cache to quickly fetch a critical address and then fill the cache afterwards within a fixed length (8/16/32/64-byte) of data without issuing multiple read commands.

The "Set Burst with Wrap" instruction allows three "Wrap Bits", W6-4 to be set. The W4 bit is used to enable or disable the "Wrap Around" operation while W6-5 are used to specify the length of the wrap around section within a page. Refer to section 9.39 for detail descriptions.

#### DTR Fast Read Quad I/O (EDh) in QPI Mode

The DTR Fast Read Quad I/O instruction is also supported in QPI mode, as shown in Figure 14c. In QPI mode, the "Read Command Bypass Mode" bits M7-0 are also considered as dummy clocks. In the default setting, the data output will follow the Read Command Bypass Mode bits immediately.

"Read Command Bypass Mode" feature is also available in QPI mode for Fast Read Quad I/O instruction. Please refer to the description on previous pages.

"Wrap Around" feature is not available in QPI mode for Fast Read Quad I/O instruction. To perform a read operation with fixed data length wrap around in QPI mode, a dedicated "Burst Read with Wrap" (0Ch) instruction must be used. Please refer to 9.39 for details.

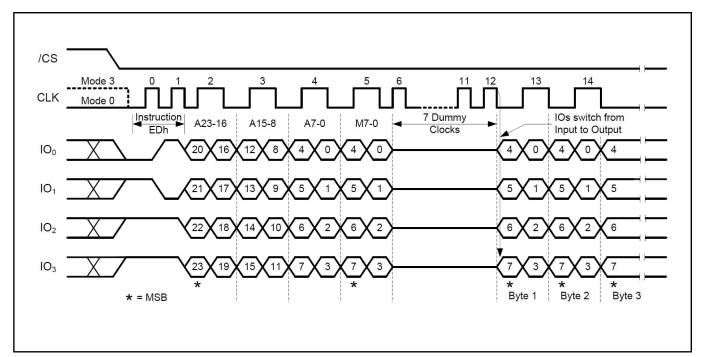



Figure 14c. DTR Fast Read Quad I/O (Initial instruction or previous M5-4≠10, QPI Mode)



### 9.17 Set Burst with Wrap (77H)

In Standard SPI mode, the Set Burst with Wrap (77h) instruction is used in conjunction with "Fast Read Quad I/O" instructions to access a fixed length of 8/16/32/64-byte section within a 256-byte page. Certain applications can benefit from this feature and improve the overall system code execution performance.

Similar to a Quad I/O instruction, the Set Burst with Wrap instruction is initiated by driving the /CS pin low and then shifting the instruction code "77h" followed by 24 dummy bits and 8 "Wrap Bits", W7-0. The instruction sequence is shown in Figure 15. Wrap bit W7 and the lower nibble W3-0 are not used.

| W6,W5 | W4=0        |             | W4=1 (Default) |             |
|-------|-------------|-------------|----------------|-------------|
|       | Wrap Around | Wrap Length | Wrap Around    | Wrap Length |
| 0, 0  | Yes         | 8-byte      | No             | N/A         |
| 0, 1  | Yes         | 16-byte     | No             | N/A         |
| 1, 0  | Yes         | 32-byte     | No             | N/A         |
| 1, 1  | Yes         | 64-byte     | No             | N/A         |

Once W6-4 is set by a Set Burst with Wrap instruction, all the following "Fast Read Quad I/O"instructions will use the W6-4 setting to access the 8/16/32/64-byte section within any page. To exit the "Wrap Around" function and return to normal read operation, another Set Burst with Wrap instruction should be issued to set W4 = 1. The default value of W4 upon power on or after a software/hardware reset is 1.

In QPI mode, the "Burst Read with Wrap (0Ch)" instruction should be used to perform the Read operation with "Wrap Around" feature. The Wrap Length set by W5-4 in Standard SPI mode is still valid in QPI mode and can also be re-configured by "Set Read Parameters (C0h)" instruction.

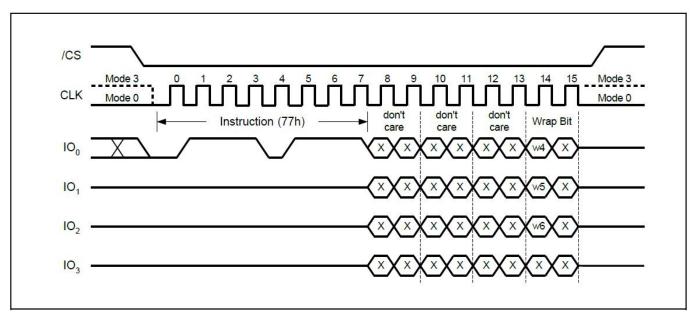



Figure 15 Set Burst with Wrap Sequence Diagram(SPI Mode only)

# G

### GT25Q64A-S

#### 9.18 Page Program (PP) (02H)

The Page Program instruction allows from one byte to 256 bytes (a page) of data to be programmed at previously erased (FFh) memory locations. A Write Enable instruction must be executed before the device will accept the Page Program Instruction (Status Register bit WEL= 1). The instruction is initiated by driving the /CS pin low then shifting the instruction code "02h" followed by a 24-bit address (A23-A0) and at least one data byte, into the DI pin. The /CS pin must be held low for the entire length of the instruction while data is being sent to the device. The Page Program instruction sequence is shown in Figure 16. If an entire 256 byte page is to be programmed, the last address byte (the 8 least significant address bits) should be set to 0. If the last address byte is not zero, and the number of clocks exceeds the remaining page length, the addressing will wrap to the beginning of the page. In some cases, less than 256 bytes (a partial page) can be programmed without having any effect on other bytes within the same page. One condition to perform a partial page program is that the number of clocks cannot exceed the remaining page length. If more than 256 bytes are sent to the device the addressing will wrap to the beginning of the page and overwrite previously sent data.

As with the write and erase instructions, the /CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the Page Program instruction will not be executed. After /CS is driven high, the self-timed Page Program instruction will commence for a time duration of tpp (See AC Characteristics). While the Page Program cycle is in progress, the Read Status Register instruction may still be accessed for checking the status of the BUSY bit. The BUSY bit is a 1 during the Page Program cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Page Program cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Page Program instruction will not be executed if the addressed page is protected by the Block Protect (CMP, SEC, TB, BP2, BP1, and BP0) bits or the Individual Block/Sector Locks.

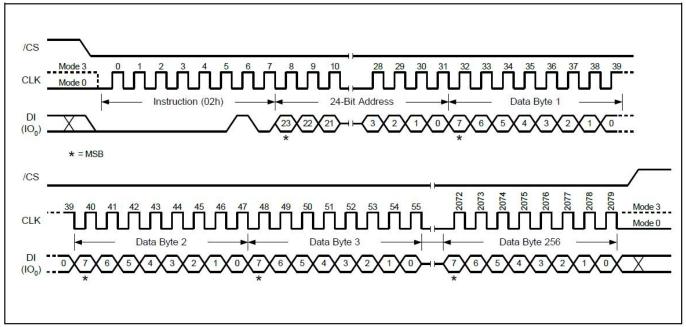



Figure 16a Page Program Sequence Diagram for SPI Mode



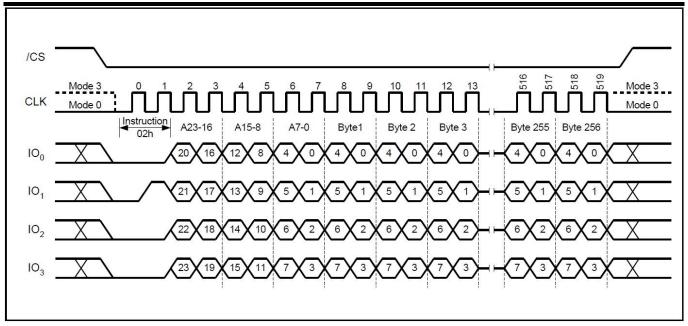



Figure 16b Page Program Sequence Diagram for QPI Mode



### 9.19 Quad Page Program (32H)

The Quad Page Program instruction allows up to 256 bytes of data to be programmed at previously erased (FFh) memory locations using four pins: IO0, IO1, IO2, and IO3. The Quad Page Program can improve performance for PROM Programmer and applications that have slow clock speeds <5MHz. Systems with faster clock speed will not realize much benefit for the Quad Page Program instruction since the inherent page program time is much greater than the time it take to clock-in the data.

To use Quad Page Program the Quad Enable (QE) bit in Status Register-2 must be set to 1. A Write Enable instruction must be executed before the device will accept the Quad Page Program instruction (Status Register-1, WEL=1). The instruction is initiated by driving the /CS pin low then shifting the instruction code "32h" followed by a 24-bit address (A23-A0) and at least one data byte, into the IO pins. The /CS pin must be held low for the entire length of the instruction while data is being sent to the device. All other functions of Quad Page Program are identical to standard Page Program. The Quad Page Program instruction sequence is shown in Figure 17.

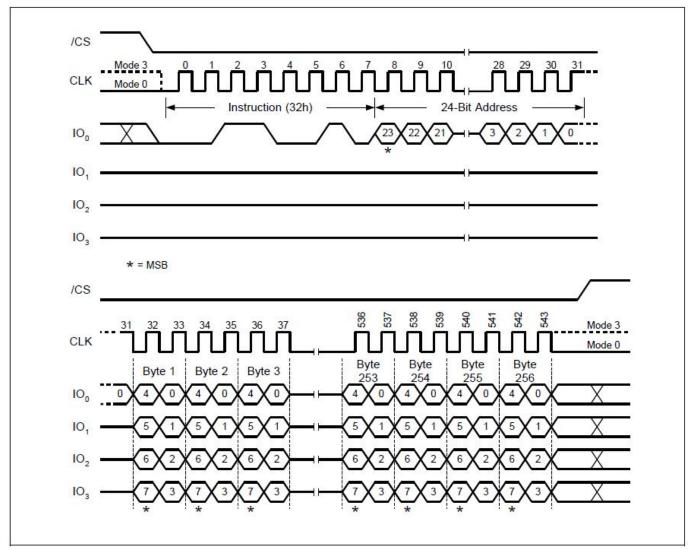



Figure 17 Quad Page Program Sequence Diagram



#### 9.20 Sector Erase (SE) (20H)

The Sector Erase instruction sets all memory within a specified sector (4K-bytes) to the erased state of all 1s (FFh). A Write Enable instruction must be executed before the device will accept the Sector Erase Instruction (Status Register bit WEL must equal 1). The instruction is initiated by driving the /CS pin low and shifting the instruction code "20h" followed a 24-bit sector address (A23-A0). The Sector Erase instruction sequence is shown in Figure 18a & 18b.

The /CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the Sector Erase instruction will not be executed. After /CS is driven high, the self-timed Sector Erase instruction will commence for a time duration of tSE (See AC Characteristics). While the Sector Erase cycle is in progress, the Read Status Register instruction may still be accessed for checking the status of the BUSY bit. The BUSY bit is a 1 during the Sector Erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Sector Erase cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Sector Erase instruction will not be executed if the addressed page is protected by the Block Protect (CMP, SEC, TB, BP2, BP1, and BP0) bits or the Individual Block/Sector Locks.

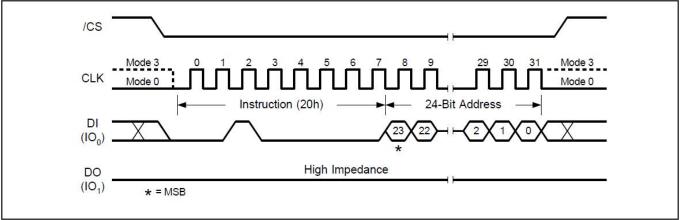



Figure 18a. Sector Erase Sequence Diagram for SPI Mode

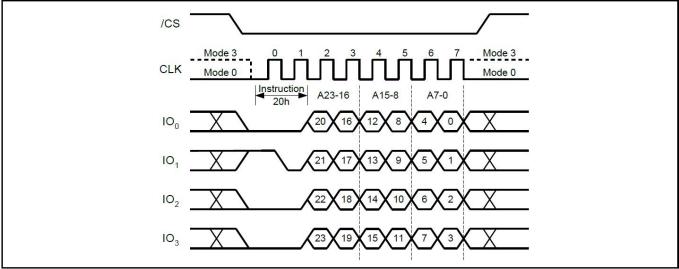



Figure 18b. Sector Erase Sequence Diagram for QPI Mode



### 9.21 32KB Block Erase (BE) (52H)

The Block Erase instruction sets all memory within a specified block (32K-bytes) to the erased state of all 1s (FFh). A Write Enable instruction must be executed before the device will accept the Block Erase Instruction (Status Register bit WEL must equal 1). The instruction is initiated by driving the /CS pin low and shifting the instruction code "52h" followed a 24-bit block address (A23-A0). The Block Erase instruction sequence is shown in Figure 19a & 19b.

The /CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the Block Erase instruction will not be executed. After /CS is driven high, the self-timed Block Erase instruction will commence for a time duration of tBE1 (See AC Characteristics). While the Block Erase cycle is in progress, the Read Status Register instruction may still be accessed for checking the status of the BUSY bit. The BUSY bit is a 1 during the Block Erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Block Erase cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Block Erase instruction will not be executed if the addressed page is protected by the Block Protect (CMP, SEC, TB, BP2, BP1, and BP0) bits or the Individual Block/Sector Locks.

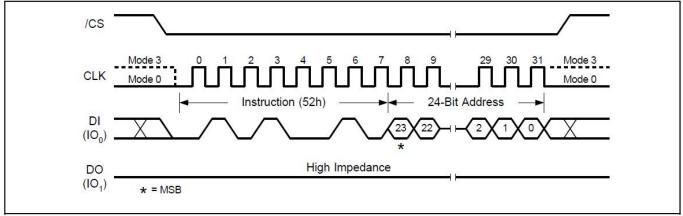



Figure 19a. 32KB Block Erase Sequence Diagram for SPI Mode

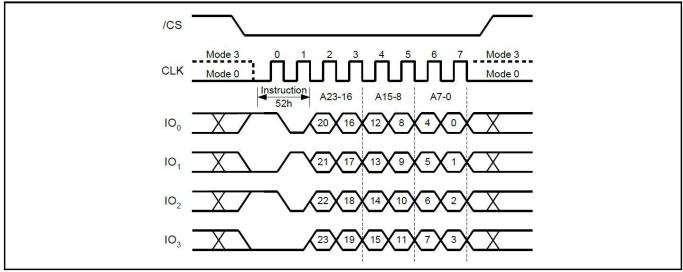



Figure 19b. 32KB Block Erase Sequence Diagram for QPI Mode



### 9.22 64KB Block Erase (BE) (D8H)

The Block Erase instruction sets all memory within a specified block (64K-bytes) to the erased state of all 1s (FFh). A Write Enable instruction must be executed before the device will accept the Block Erase Instruction (Status Register bit WEL must equal 1). The instruction is initiated by driving the /CS pin low and shifting the instruction code "D8h" followed a 24-bit block address (A23-A0). The Block Erase instruction sequence is shown in Figure 20a & 20b.

The /CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the Block Erase instruction will not be executed. After /CS is driven high, the self-timed Block Erase instruction will commence for a time duration of tBE (See AC Characteristics). While the Block Erase cycle is in progress, the Read Status Register instruction may still be accessed for checking the status of the BUSY bit. The BUSY bit is a 1 during the Block Erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Block Erase cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Block Erase instruction will not be executed if the addressed page is protected by the Block Protect (CMP, SEC, TB, BP2, BP1, and BP0) bits or the Individual Block/Sector Locks.

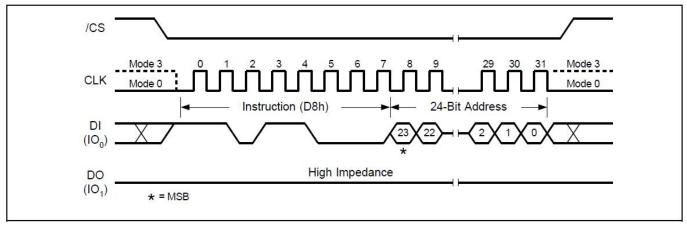



Figure 20a 64KB Block Erase Sequence Diagram for SPI Mode

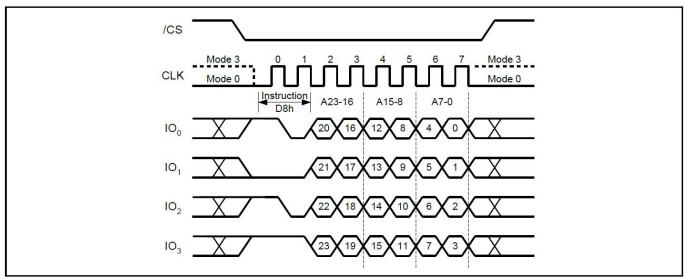



Figure 20b. 64KB Block Erase Sequence Diagram for QPI Mode



### 9.23 Chip Erase (CE) (60/C7H)

The Chip Erase instruction sets all memory within the device to the erased state of all 1s (FFh). A Write Enable instruction must be executed before the device will accept the Chip Erase Instruction (Status Register bit WEL must equal 1). The instruction is initiated by driving the /CS pin low and shifting the instruction code "C7h" or "60h". The Chip Erase instruction sequence is shown in Figure 21.

The /CS pin must be driven high after the eighth bit has been latched. If this is not done the Chip Erase instruction will not be executed. After /CS is driven high, the self-timed Chip Erase instruction will commence for a time duration of tCE (See AC Characteristics). While the Chip Erase cycle is in progress, the Read Status Register instruction may still be accessed to check the status of the BUSY bit. The BUSY bit is a 1 during the Chip Erase cycle and becomes a 0 when finished and the device is ready to accept other instructions again. After the Chip Erase cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Chip Erase instruction will not be executed if any memory region is protected by the Block Protect (CMP, SEC, TB, BP2, BP1, and BP0) bits or the Individual Block/Sector Locks.

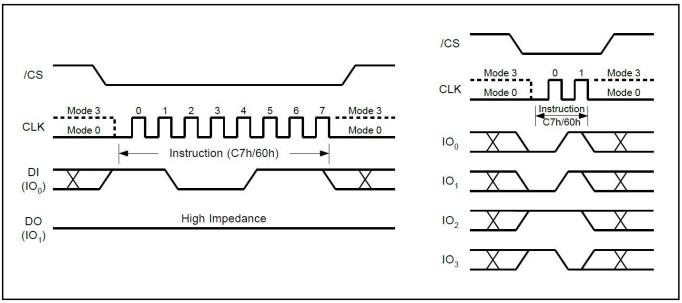



Figure 21. Chip Erase Sequence Diagram for SPI Mode(left) or QPI Mode(right)



#### 9.24 Deep Power-Down (DP) (B9H)

Although the standby current during normal operation is relatively low, standby current can be further reduced with the Power-down instruction. The lower power consumption makes the Power-down instruction especially useful for battery powered applications (See ICC1 and ICC2 in AC Characteristics). The instruction is initiated by driving the /CS pin low and shifting the instruction code "B9h" as shown in Figure 22a & 22b.

The /CS pin must be driven high after the eighth bit has been latched. If this is not done the Power-down instruction will not be executed. After /CS is driven high, the power-down state will entered within the time duration of tDP (See AC Characteristics). While in the power-down state only the Release Power-down /Device ID (ABh) instruction, which restores the device to normal operation, will be recognized. All other instructions are ignored. This includes the Read Status Register instruction, which is always available during normal operation. Ignoring all but one instruction makes the Power Down state a useful condition for securing maximum write protection. The device always powers-up in the normal operation with the standby current of ICC1.

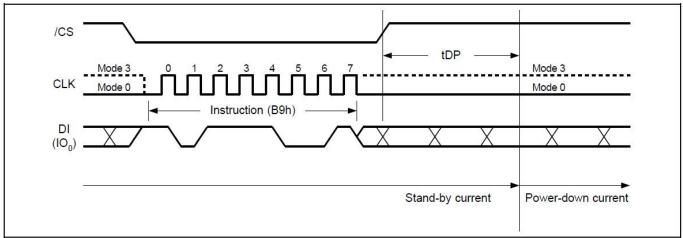



Figure 22a. Deep Power-Down Sequence Diagram for SPI Mode

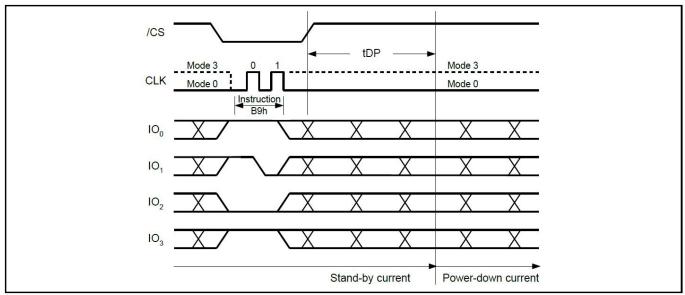



Figure 22b. Deep Power-Down Sequence Diagram for QPI Mode



### 9.25 Release from Deep Power-Down and Read Device ID (RDI) (ABH)

The Release from Power-Down and Read Device ID command is a multi-purpose command. It can be used to release the device from the Power-Down state or obtain the devices electronic identification (ID) number.

To release the device from the Power-Down state, the command is issued by driving the CS# pin low, shifting the instruction code "ABH" and driving CS# high as shown in Figure 23. Release from Power-Down will take the time duration of tRES1 (See AC Characteristics) before the device will resume normal operation and other command are accepted. The CS# pin must remain high during the tRES1 time duration.

When used only to obtain the Device ID while not in the Power-Down state, the command is initiated by driving the CS# pin low and shifting the instruction code "ABH" followed by 3-dummy byte. The Device ID bits are then shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 37. The Device ID value is listed in Manufacturer and Device Identification table. The Device ID can be read continuously. The command is completed by driving CS# high.

If the Release from Power-down instruction is issued while an Erase, Program or Write cycle is in process (when BUSY equals 1) the instruction is ignored and will not have any effects on the current cycle.

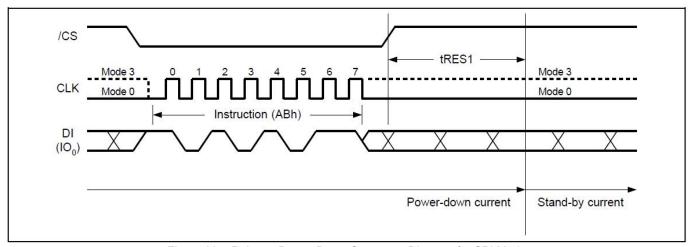



Figure 23a. Release Power-Down Sequence Diagram for SPI Mode

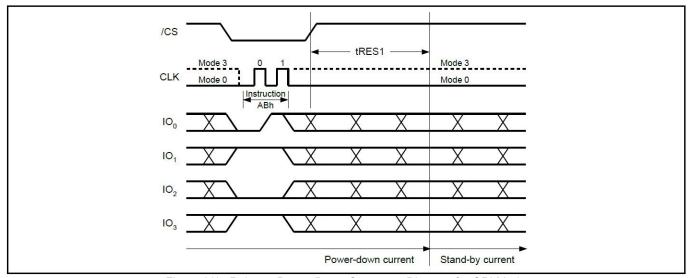



Figure 23b. Release Power-Down Sequence Diagram for QPI Mode



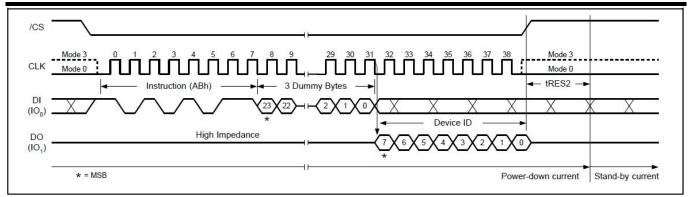



Figure 23c. Release Power-Down/Read Device ID Sequence Diagram for SPI Mode

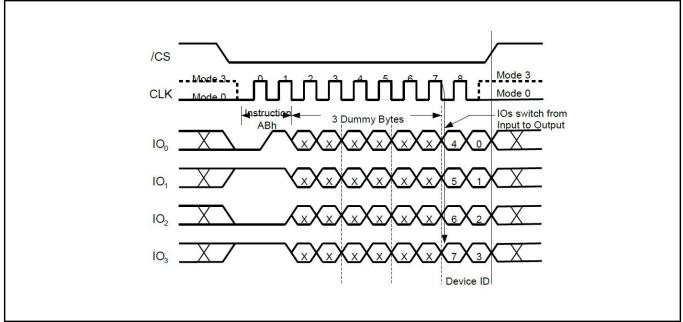



Figure 23d. Release Power-Down/Read Device ID Sequence Diagram for QPI Mode

#### 9.26 Read Manufacture ID/ Device ID (REMS) (90H)

The Read Manufacturer/Device ID command is an alternative to the Release from Power-Down / Device ID command that provides both the JEDEC assigned Manufacturer ID and the specific Device ID.

The Read Manufacturer/Device ID instruction is very similar to the Release from Power-down / Device ID instruction. The instruction is initiated by driving the /CS pin low and shifting the instruction code "90h" followed by a 24-bit address (A23-A0) of 000000h. After which, the Manufacturer ID for Giantec (C4h) and the Device ID are shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 24. The Device ID values for the GT25Q64A-S are listed in Manufacturer and Device Identification table. The instruction is completed by driving /CS high.



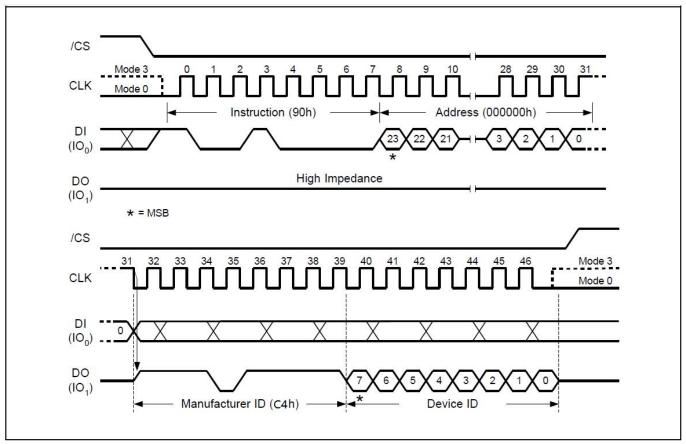



Figure 24. Read Manufacture ID/ Device ID Sequence Diagram for SPI Mode

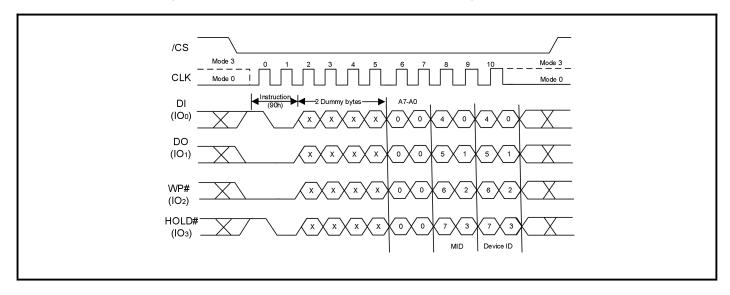



Figure 24b. Read Manufacture ID/ Device ID Sequence Diagram for QPI Mode



### 9.26 Read Manufacture ID/ Device ID Dual I/O (92H)

The Read Manufacturer / Device ID Dual I/O instruction is an alternative to the Read Manufacturer / Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID at 2x speed.

The Read Manufacturer / Device ID Dual I/O instruction is similar to the Fast Read Dual I/O instruction. The instruction is initiated by driving the /CS pin low and shifting the instruction code "92h" followed by a 24-bit address (A23-A0) of 000000h, but with the capability to input the Address bits two bits per clock. After which, the Manufacturer ID for Giantec (C4h) and the Device ID are shifted out 2 bits per clock on the falling edge of CLK with most significant bits (MSB) first as shown in Figure 25. The Device ID values for the GT25Q64A-S are listed in Manufacturer and Device Identification table. If the 24-bit address is initially set to 000001h the Device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving /CS high.

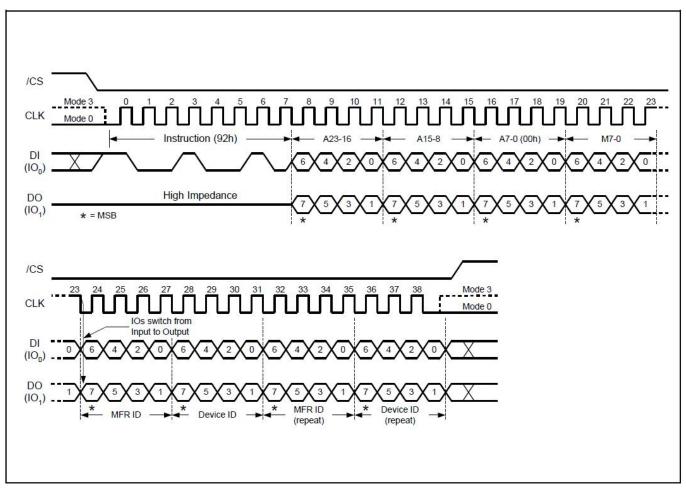



Figure 25. Read Manufacture ID/ Device ID Dual I/O Sequence Diagram

### 9.27 Read Manufacture ID/ Device ID Quad I/O (94H)

The Read Manufacturer / Device ID Quad I/O instruction is an alternative to the Read Manufacturer / Device ID instruction that provides both the JEDEC assigned manufacturer ID and the specific device ID at 4x speed.

The Read Manufacturer / Device ID Quad I/O instruction is similar to the Fast Read Quad I/O instruction. The instruction is initiated by driving the /CS pin low and shifting the instruction code "94h" followed by a four clock dummy cycles and then a 24-bit address (A23-A0) of 000000h, but with the capability to input the Address bits four bits per clock. After which, the Manufacturer ID for Giantec (C4h) and the Device ID are shifted out four bits per clock on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 26. The Device ID values for the GT25Q64A-S are listed in Manufacturer and Device Identification table. If the 24-bit address is initially set to 000001h the Device ID will be read first and then followed by the Manufacturer ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is completed by driving /CS high.

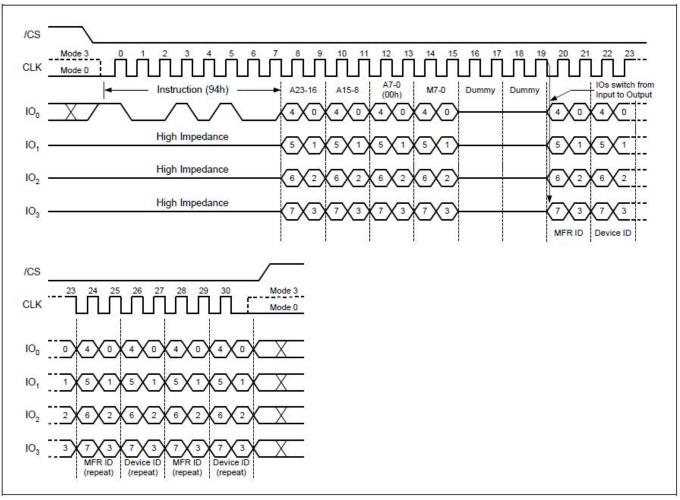



Figure 26. Read Manufacture ID/ Device ID Quad I/O Sequence Diagram



### 9.28 Read Identification (RDID) (9FH)

For compatibility reasons, the GT25Q64A-S provides several instructions to electronically determine the identity of the device. The Read JEDEC ID instruction is compatible with the JEDEC standard for SPI compatible serial memories that was adopted in 2003. The command is initiated by driving the CS# pin low and shifting the command code "90H" followed by a 24-bit address (A23-A0) of 000000H. After which, the Manufacturer ID and the Device ID are shifted out on the falling edge of CLK with most significant bit (MSB) first as shown in Figure 23. If the 24-bit address is initially set to 000001H, the Device ID will be read first.

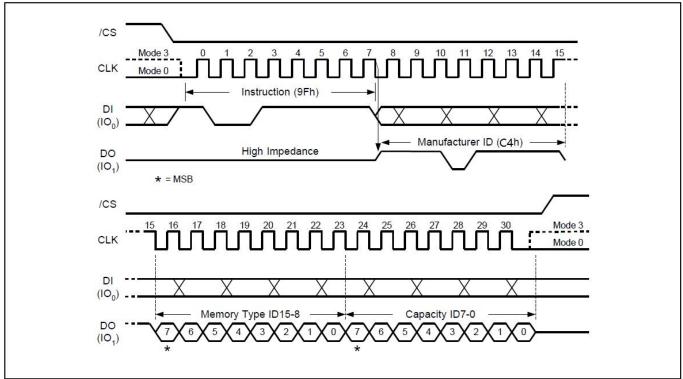



Figure 26a.Read Identification ID Sequence Diagram for SPI Mode

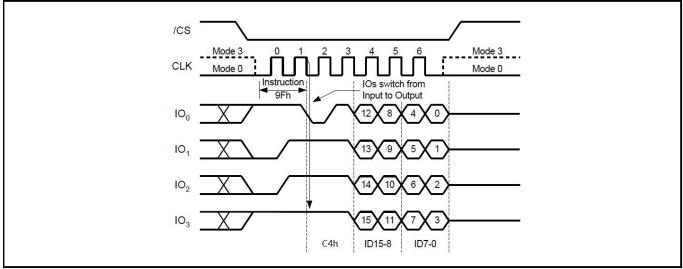



Figure 27b.Read Identification ID Sequence Diagram for QPI Mode



#### 9.29 Read Unique ID Number (4Bh)

The Read Unique ID Number instruction accesses a factory-set read-only 128-bit number that is unique to each GT25Q64A-S device. The ID number can be used in conjunction with user software methods to help prevent copying or cloning of a system. The Read Unique ID instruction is initiated by driving the /CS pin low and shifting the instruction code "4Bh" followed by a four bytes of dummy clocks. After which, the 128- bit ID is shifted out on the falling edge of CLK as shown in figure 28.

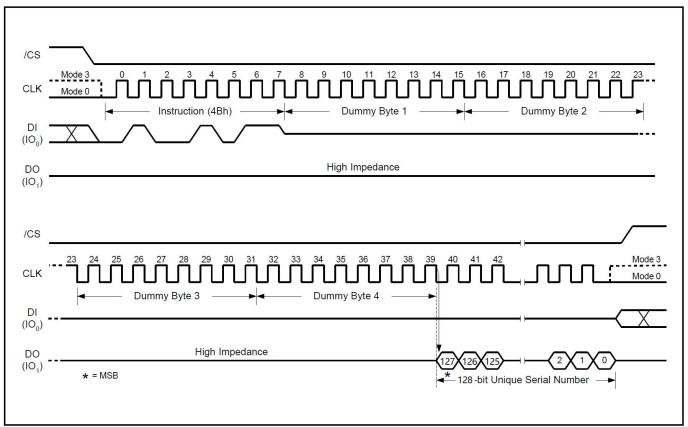



Figure 28. Read Unique ID Number Instruction Sequence

# G

### GT25Q64A-S

### 9.30 Program/Erase Suspend (PES) (75H)

The Erase/Program Suspend instruction "75h", allows the system to interrupt a Sector or Block Erase operation or a Page Program operation and then read from or program/erase data to, any other sectors or blocks. The Erase/Program Suspend instruction sequence is shown in Figure 29a & 29b.

The Write Status Register instruction (01h) and Erase instructions (20h, 52h, D8h, C7h, 60h, 44h) are not allowed during Erase Suspend. Erase Suspend is valid only during the Sector or Block erase operation. If written during the Chip Erase operation, the Erase Suspend instruction is ignored. The Write Status Register instruction (01h) and Program instructions (02h, 32h, 42h) are not allowed during Program Suspend. Program Suspend is valid only during the Page Program or Quad Page Program operation.

The Erase/Program Suspend instruction "75h" will be accepted by the device only if the SUS bit in the Status Register equals to 0 and the BUSY bit equals to 1 while a Sector or Block Erase or a Page Program operation is on-going. If the SUS bit equals to 1 or the BUSY bit equals to 0, the Suspend instruction will be ignored by the device. A maximum of time of "tSUS" (See AC Characteristics) is required to suspend the erase or program operation. The BUSY bit in the Status Register will be cleared from 1 to 0 within "tSUS" and the SUS bit in the Status Register will be set from 0 to 1 immediately after Erase/Program Suspend. For a previously resumed Erase/Program operation, it is also required that the Suspend instruction "75h" is not issued earlier than a minimum of time of "tSUS" following the preceding Resume instruction "7Ah".

Unexpected power off during the Erase/Program suspend state will reset the device and release the suspend state. SUS bit in the Status Register will also reset to 0. The data within the page, sector or block that was being suspended may become corrupted. It is recommended for the user to implement system design techniques against the accidental power interruption and preserve data integrity duringerase/program suspend state.

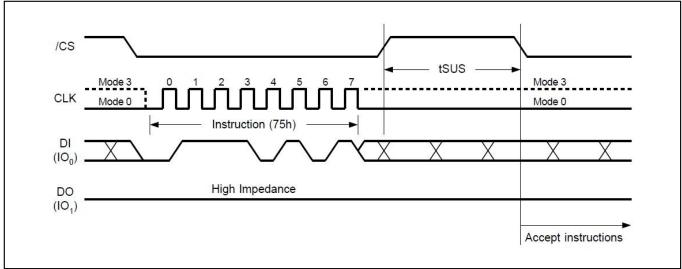



Figure 29a. Program/Erase Suspend Sequence Diagram for SPI Mode



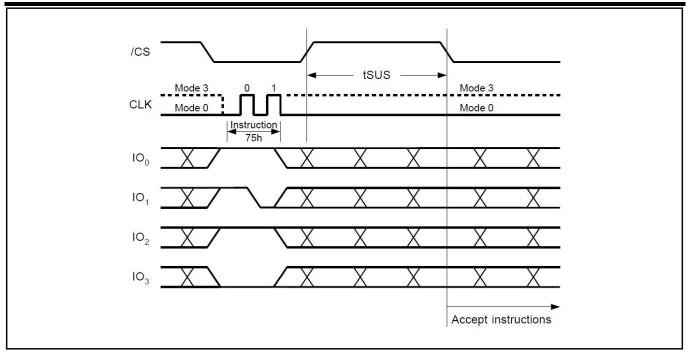



Figure 29b. Program/Erase Suspend Sequence Diagram for QPI Mode



#### 9.31 Program/Erase Resume (PER) (7AH)

The Erase/Program Resume instruction "7Ah" must be written to resume the Sector or Block Erase operation or the Page Program operation after an Erase/Program Suspend. The Resume instruction "7Ah" will be accepted by the device only if the SUS bit in the Status Register equals to 1 and the BUSY bit equals to 0. After issued the SUS bit will be cleared from 1 to 0 immediately, the BUSY bit will be set from 0 to 1 within 200ns and the Sector or Block will complete the erase operation or the page will complete the program operation. If the SUS bit equals to 0 or the BUSY bit equals to 1, the Resume instruction "7Ah" will be ignored by the device. The Erase/Program Resume instruction sequence is shown in Figure 30.

Resume instruction is ignored if the previous Erase/Program Suspend operation was interrupted by unexpected power off. It is also required that a subsequent Erase/Program Suspend instruction not to be issued within a minimum of time of "tSUS" following a previous Resume instruction.

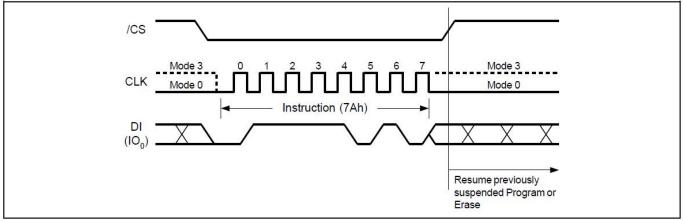



Figure 30a. Program/Erase Resume Sequence Diagram for SPI Mode

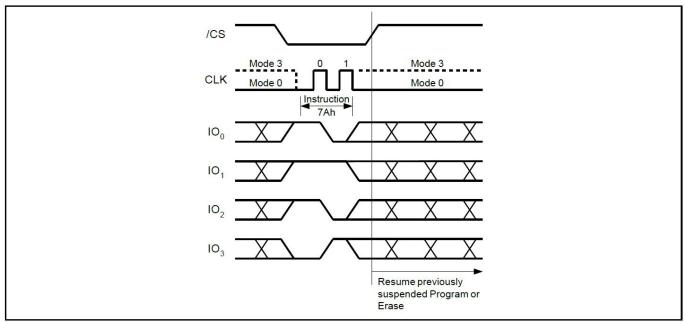



Figure 30b. Program/Erase Resume Sequence Diagram for QPI Mode



#### 9.32 Enable Reset (66H) and Reset (99H)

If the Reset command is accepted, any on-going internal operation will be terminated and the device will return to its default power-on state and lose all the current volatile settings, such as Volatile Status Register bits, Write Enable Latch status (WEL), Program/Erase Suspend status, Read Parameter setting (P7-P0), Deep Power Down Mode, Continuous Read Mode bit setting (M7-M0) and Wrap Bit Setting (W6-W4).

The "Enable Reset (66H)" and the "Reset (99H)" commands can be issued in either SPI mode. The "Reset (99H)" command sequence as follow: CS# goes low → Sending Enable Reset command → CS# goes high → CS# goes low → Sending Reset command → CS# goes high. Once the Reset command is accepted by the device, the device will take approximately tRST/tRST\_E to reset. During this period, no command will be accepted. Data corruption may happen if there is an on-going or suspended internal Erase or Program operation when Reset command sequence is accepted by the device. It is recommended to check the BUSY bit and the SUS bit in Status Register before issuing the Reset command sequence.

Data corruption may happen if there is an on-going or suspended internal Erase or Program operation when Reset command sequence is accepted by the device. It is recommended to check the BUSY bit and the SUS bit in Status Register before issuing the Reset command sequence.

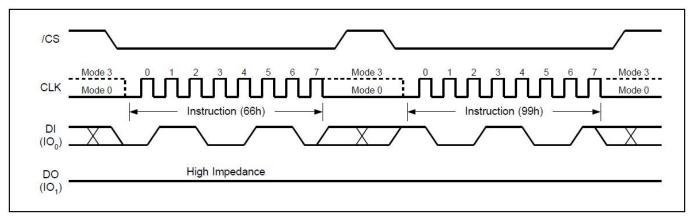



Figure 31a. Enable Reset and Reset Instruction Sequence for SPI Mode

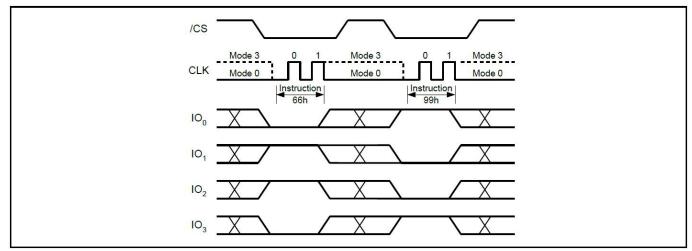



Figure 31b. Enable Reset and Reset Instruction Sequence for QPI Mode



#### 9.33 Read SFDP Register (5Ah)

The GT25Q64A-S features a 256-Byte Serial Flash Discoverable Parameter (SFDP) register that contains information about device configurations, available instructions and other features. The SFDP parameters are stored in one or more Parameter Identification (PID) tables. Currently only one PID table is specified, but more may be added in the future. The Read SFDP Register instruction is compatible with the SFDP standard initially established in 2010 for PC and other applications, as well as the JEDEC standard JESD216 that is published in 2011. Most Giantec SPI Flash Memories shipped after June 2011 (date code 1124 and beyond) support the SFDP feature as specified in the applicable datasheet.

The Read SFDP instruction is initiated by driving the /CS pin low and shifting the instruction code "5Ah"followed by a 24-bit address (A23-A0)(1) into the DI pin. Eight "dummy" clocks are also required before the SFDP register contents are shifted out on the falling edge of the 40th CLK with most significant bit (MSB) first as shown in Figure 32. For SFDP register values and descriptions, please refer to the Giantec Application Note for SFDP Definition Table.

Note: 1. A23-A8 = 0; A7-A0 are used to define the starting byte address for the 256-Byte SFDP Register.

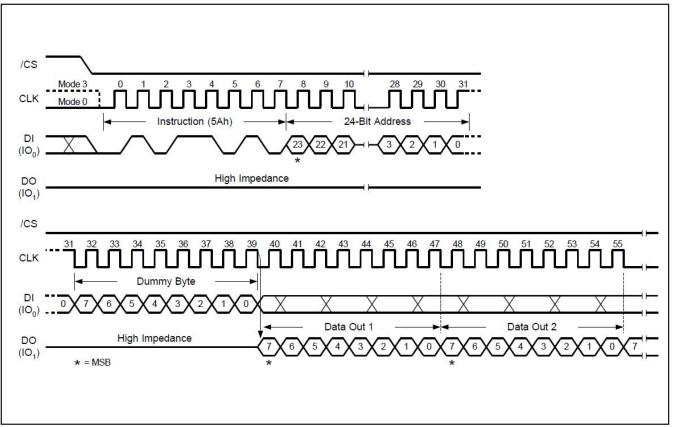



Figure 32. Read SFDP Register Instruction Sequence Diagram(SPI mode only)



#### Signature and Parameter Identification Data Values

| Description                                                         | Byte Add(H) | Bit Add  | Data | Data |
|---------------------------------------------------------------------|-------------|----------|------|------|
|                                                                     | 00H         | 7:00     | 53H  | 53H  |
| SFDP Signature                                                      | 01H         | 15:08    | 46H  | 46H  |
| SEDE Signature                                                      | 02H         | 23:16    | 44H  | 44H  |
|                                                                     | 02H         | 31:24    | 50H  | 50H  |
| SFDP Minor Revision Number                                          | 04H         | 7:00     | 06H  | 06H  |
| SFDP Major Revision Number                                          | 05H         | 15:08    | 01H  | 01H  |
| Number of Parameters Headers                                        | 06H         | 23:16    | 01H  | 01H  |
| Unused                                                              | 07H         | 31:24    | FFH  | FFH  |
| ID number (JEDEC)                                                   | 08H         | 7:00     | 00H  | 00H  |
| Parameter Table Minor Revision Number                               | 09H         | 15:08    | 06H  | 06H  |
| Parameter Table Major Revision Number                               | 0AH         | 23:16    | 01H  | 01H  |
| Parameter Table Length (in double word)                             | 0BH         | 31:24    | 10H  | 10H  |
|                                                                     | 0CH         | 7:00     | 30H  | 30H  |
| Parameter Table Pointer (PTP)                                       | 0DH         | 15:08    | 00H  | 00H  |
|                                                                     | 0EH         | 23:16    | 00H  | 00H  |
| Unused                                                              | 0FH         | 31:24    | FFH  | FFH  |
| ID Number LSB (Giantec Manufacturer ID)                             | 10H         | 7:00     | C4H  | C4H  |
| Parameter Table Minor Revision Number                               | 11H         | 15:08    | 00H  | 00H  |
| Parameter Table Major Revision Number                               | 12H         | 23:16    | 01H  | 01H  |
| Parameter Table Length (in double word)                             | 13H         | 31:24    | 03H  | 03H  |
|                                                                     | 14H         | 7:00     | 90H  | 90H  |
| Parameter Table Pointer (PTP)                                       | 15H         | 15:08    | 00H  | 00H  |
|                                                                     | 16H         | 23:16    | 00H  | 00H  |
| Unused                                                              | 17H         | 31:24:00 | FFH  | FFH  |
| Unused                                                              |             |          | FFH  | FFH  |
| Block/Sector Erase Size                                             |             | 1:00     | 01b  |      |
| Write Granularity                                                   | 1           | 2        | 1b   |      |
| Volatile Status Registers Block Protect bits                        | 30H         | 3        | 0b   | E5H  |
| Write Enable Opcode Select for Writing to Volatile Status Registers |             | 4        | 0b   |      |



| Description                                         | Byte Add(H) | Bit Add | Data    | Data     |
|-----------------------------------------------------|-------------|---------|---------|----------|
|                                                     |             |         |         |          |
|                                                     |             |         |         |          |
|                                                     |             |         |         |          |
| Unused                                              |             | 7:05    | 111b    |          |
| 4KB Erase Opcode                                    | 31H         | 15:08   | 20H     | 20H      |
| (1-1-2) Fast Read                                   |             | 16      | 1b      |          |
| Address Bytes Number used in addressing flash array |             | 18:17   | 00b     |          |
| Double Transfer Rate (DTR) clocking                 | 32H         | 19      | 1b      | F9H      |
| (1-2-2) Fast Read                                   |             | 20      | 1b      |          |
| (1-4-4) Fast Read                                   |             | 21      | 1b      |          |
| (1-1-4) Fast Read                                   |             | 22      | 1b      |          |
| Unused                                              |             | 23      | 1b      |          |
| Unused                                              | 33H         | 31:24   | FFH     | FFH      |
| Flash Memory Density                                | 37H:34H     | 31:00   | 03FFFFF | FH(64Mb) |
| (1-4-4) Fast Read Number of Wait states             | 38H         | 4:00    | 00100b  | 44H      |
| (1-4-4) Fast Read Number of Mode Bits               | ЗОП         | 7:05    | 010b    | 44П      |
| (1-4-4) Fast Read Opcode                            | 39H         | 15:08   | EBH     | EBH      |
| (1-1-4) Fast Read Number of Wait states             | 3AH         | 20:16   | 01000b  | 08H      |
| (1-1-4) Fast Read Number of Mode Bits               | 07.11       | 23:21   | 000b    | 0011     |
| (1-1-4) Fast Read Opcode                            | 3BH         | 31:24   | 6BH     | 6BH      |
| (1-1-2) Fast Read Number of Wait states             | 3CH         | 4:00    | 01000b  | 08H      |
| (1-1-2) Fast Read Number of Mode Bits               | 33.1        | 7:05    | 000b    |          |
| (1-1-2) Fast Read Opcode                            | 3DH         | 15:08   | 3BH     | 3BH      |
| (1-2-2) Fast Read Number of Wait states             | 3EH         | 20:16   | 00000b  | 80H      |
| (1-2-2) Fast Read Number of Mode Bits               | <b>5</b> =  | 23:21   | 100b    |          |
| (1-2-2) Fast Read Opcode                            | 3FH         | 31:24   | ВВН     | ВВН      |
| (2-2-2) Fast Read                                   |             | 0       | 0b      |          |
| Unused                                              | 4011        | 3:01    | 111b    | FFII     |
| (4-4-4) Fast Read                                   | 40H         | 4       | 1b      | FEH      |
| Unused                                              |             | 7:05    | 111b    |          |
| Unused                                              | 43H:41H     | 31:08   | 0xFFH   | 0xFFH    |
| Unused                                              | 45H:44H     | 15:00   | 0xFFH   | 0xFFH    |
| (2-2-2) Fast Read Number of Wait states             | 46H         | 20:16   | 00000b  | 00H      |
| (2-2-2) Fast Read Number of Mode Bits               | 40F         | 23:21   | 000b    | UUN      |
| (2-2-2) Fast Read Opcode                            | 47H         | 31:24   | FFH     | FFH      |



| Description                                                           | Byte Add(H)      | Bit Add | Data   | Data      |  |
|-----------------------------------------------------------------------|------------------|---------|--------|-----------|--|
| Unused                                                                | 49H:48H          | 15:00   | FFFFH  | FFFFH     |  |
| (4-4-4) Fast Read Number of Wait states                               | - 4AH            | 20:16   | 00000b | 40H       |  |
| (4-4-4) Fast Read Number of Mode Bits                                 | 4/(1)            | 23:21   | 010b   | 400       |  |
| (4-4-4) Fast Read Opcode                                              | 4BH              | 31:24   | EBH    | EBH       |  |
| Sector Type 1 Size                                                    | 4CH              | 7:00    | 0CH    | 0CH       |  |
| Sector Type 1 erase Opcode                                            | 4DH              | 15:08   | 20H    | 20H       |  |
| Sector Type 2 Size                                                    | 4EH              | 23:16   | 0FH    | 0FH       |  |
| Sector Type 2 erase Opcode                                            | 4FH              | 31:24   | 52H    | 52H       |  |
| Sector Type 3 Size                                                    | 50H              | 7:00    | 10H    | 10H       |  |
| Sector Type 3 erase Opcode                                            | 51H              | 15:08   | D8H    | D8H       |  |
| Sector Type 4 Size                                                    | 52H              | 23:16   | 00H    | 00H       |  |
| Sector Type 4 erase Opcode                                            | 53H              | 31:24   | FFH    | FFH       |  |
| Multiplier from typical erase time to maximum erase time              |                  | 3:0     | 0001b  |           |  |
| O                                                                     | ]                | 8:4     | 00010b |           |  |
| Sector Type 1 ERASE time (typ)                                        |                  | 10:9    | 00b    |           |  |
| Sector Type 2 ERASE time (typ)  Sector Type 3 ERASE time (typ)        | 1                | 15:11   | 00010b |           |  |
|                                                                       | 57:54h<br>-<br>- | 17:16   | 00b    | 00081021H |  |
|                                                                       |                  | 22:18   | 00010b |           |  |
|                                                                       |                  | 24:23   | 00b    |           |  |
|                                                                       |                  | 29:25   | 00000b |           |  |
| Sector Type 4 ERASE time (typ)                                        |                  | 31:30   | 00b    |           |  |
| Multiplier from typical time to maximum time for page or byte PROGRAM | 58h              | 3:0     | 1001b  | 89H       |  |
| Page size                                                             |                  | 7:4     | 1000b  |           |  |
| Page Program Typical time                                             |                  | 12:8    | 00001b |           |  |
| rage riogram rypical time                                             |                  | 13      | 1b     |           |  |
| Byte Program Typical time, first byte                                 | 5Ah:59h          | 17:14   | 0011b  | 9CE1H     |  |
| Byte Program Typical time, first byte                                 | 5A11.5911        | 18      | 1b     | 90ETH     |  |
| Byte Program Typical time, additional byte                            |                  | 22:19   | 0011b  |           |  |
| Byte Program Typical time, additional byte                            |                  | 23      | 1b     |           |  |
| Chip Erase, Typical time                                              |                  | 28:24   | 11010b | BAH       |  |
| Units                                                                 | 5Bh              | 30:29   | 01b    | DAIT      |  |
| Reserved                                                              |                  | 31      | 1b     |           |  |
| Prohibited Operations During Program<br>Suspend                       |                  | 3:0     | 1100b  |           |  |
| Prohibited Operations During Erase<br>Suspend                         | - 5Ch            | 7:4     | 1110b  | ECH       |  |



| Description                                        | Byte Add(H) | Bit Add | Data    | Data    |
|----------------------------------------------------|-------------|---------|---------|---------|
| Reserved                                           |             | 8       | 0b      |         |
| Program Resume to Suspend Interval                 |             | 12:9    | 0001b   |         |
|                                                    | 5Eh:5Dh     | 17:13   | 10011b  | 1662H   |
| Suspend in-progress program max latency            |             | 19:18   | 01b     |         |
| Erase Resume to Suspend Interval                   |             | 23:20   | 0001b   |         |
| Suspend in-progress erase max latency              |             | 28:24   | 10011b  |         |
| Cusperia in-progress crase maximizations           | 5Fh         | 30:29   | 01b     | 33H     |
| Suspend /Resume supported                          |             | 31      | 0b      |         |
| Program Resume Instruction                         | 60h         | 7:0     | 7Ah     | 7Ah     |
| Program Suspend Instruction                        | 61h         | 15:8    | 75h     | 75h     |
| Resume Instruction                                 | 62h         | 23:16   | 7Ah     | 7Ah     |
| Suspend Instruction                                | 63h         | 31:24   | 75h     | 75h     |
| Reserved                                           |             | 1:0     | 00b     |         |
| Status Register Polling Device Busy                | 64h         | 7:2     | 111101b | F4H     |
| Exit Deep Power-down to next operation delay       |             | 12:8    | 00010b  |         |
| Exit Deep Power-down to next operation delay Units |             | 14:13   | 01b     |         |
| Exit Deep Power-down Instruction                   | 67h:65h     | 22:15   | ABh     | 5CD5A2H |
| Enter Deep Power-down Instruction                  |             | 30:23   | B9h     |         |
| Deep Power-down Supported                          |             | 31      | 0b      |         |
| 4-4-4 mode disable sequences (QPIDI)               |             | 3:0     | 1001b   |         |
| 4-4-4 mode enable sequences (QPIEN)                |             | 8:4     | 00001b  |         |
| 0-4-4 Mode Supported                               | 69h:68h     | 9       | 1b      | 0619H   |
| 0-4-4 Mode Exit Method                             |             | 15:10   | 000001b |         |
| 0-4-4 Mode Entry Method:                           |             | 19:16   | 1100b   |         |
| Quad Enable Requirements (QER)                     | 6Ah         | 22:20   | 101b    | 5CH     |



| Description                                                                                   | Byte Add(H) | Bit Add | Data            | Data  |
|-----------------------------------------------------------------------------------------------|-------------|---------|-----------------|-------|
| Hold or RESET Disable                                                                         |             | 23      | 0b              |       |
| Reserved                                                                                      | 6Bh         | 31:24   | FFh             | FFh   |
| Volatile or Non-Volatile Register and Write Enable Instruction for Status Register 1 Reserved | 6Ch         | 6:0     | 0001000b<br>0b  | 08Н   |
| Reserved                                                                                      |             | /       | db              |       |
| Soft Reset and Rescue Sequence Support                                                        | 6Eh:6Dh     | 13:8    | 010000b         | F850H |
| Exit 4-Byte Addressing                                                                        |             | 23:14   | 1111100001<br>b |       |
| Enter 4-Byte Addressing                                                                       | 6Fh         | 31:24   | 10100001b       | A1h   |
| Vcc Supply Maximum Voltage                                                                    | 91H:90H     | 15:00   | 3600H           | 3600H |
| Vcc Supply Minimum Voltage                                                                    | 93H:92H     | 31:16   | 2300H           | 2300H |
| HW Reset# pin                                                                                 |             | 0       | 0b              |       |
| HW Hold# pin                                                                                  |             | 1       | 1b              |       |
| Deep Power Down Mode                                                                          |             | 2       | 1b              |       |
| SW Reset                                                                                      |             | 3       | 1b              |       |
| SW Reset Opcode                                                                               | 95H:94H     | 11:04   | 99H             | F99EH |
| Program Suspend/Resume                                                                        |             | 12      | 1b              |       |
| Erase Suspend/Resume                                                                          |             | 13      | 1b              |       |
| Unused                                                                                        |             | 14      | 1b              |       |



| Description                                                       | Byte Add(H) | Bit Add | Data  | Data  |
|-------------------------------------------------------------------|-------------|---------|-------|-------|
| Wrap-Around Read mode                                             |             | 15      | 1b    |       |
| Wrap-Around Read mode Opcode                                      | 96H         | 23:16   | 77H   | 77H   |
| Wrap-Around Read data length                                      | 97H         | 31:24   | 64H   | 64H   |
| Individual block lock                                             |             | 0       | 0b    |       |
| Individual block lock bit (Volatile/Nonvolatile)                  |             | 1       | 0b    |       |
| Individual block lock Opcode                                      |             | 9:2     | FFH   |       |
| Individual block lock Volatile protect bit default protect status | 9BH:98 H    | 10      | 0b    | CBFCH |
| Secured OTP                                                       | 9511.9011   | 11      | 1b    |       |
| Read Lock                                                         |             | 12      | 0b    |       |
| Permanent Lock                                                    |             | 13      | 0b    |       |
| Unused                                                            |             | 15:14   | 11b   |       |
| Unused                                                            |             | 31:16   | FFFFH | FFFFH |
|                                                                   |             |         |       |       |
|                                                                   |             |         |       |       |
|                                                                   |             |         |       |       |
| Unused                                                            |             |         | FFH   | FFH   |
| Unused                                                            | FFH         | FFH     | FFH   | FFH   |



#### 9.34 Erase Security Registers (44h)

The GT25Q64A-S offers three 1024-byte Security Registers which can be erased and programmed individually. These registers may be used by the system manufacturers to store security and other important information separately from the main memory array.

The Erase Security Register instruction is similar to the Sector Erase instruction. A Write Enable instruction must be executed before the device will accept the Erase Security Register Instruction (Status Register bit WEL must equal 1). The instruction is initiated by driving the /CS pin low and shifting the instruction code "44h" followed by a 24-bit address (A23-A0) to erase one of the three security registers.

| ADDRESS              | A23-A16 | A15-A11 | A10-A0     |
|----------------------|---------|---------|------------|
| Security Register #1 | 00h     | 0h      | Don't Care |
| Security Register #2 | 00h     | 1h      | Don't Care |
| Security Register #3 | 00h     | 2h      | Don't Care |

The Erase Security Register instruction sequence is shown in Figure 33. The /CS pin must be driven high after the eighth bit of the last byte has been latched. If this is not done the instruction will not be executed. After /CS is driven high, the self-timed Erase Security Register operation will commence for a time duration of tSE (See AC Characteristics). While the Erase Security Register cycle is in progress, the Read Status Register instruction may still be accessed for checking the status of the BUSY bit. The BUSY bit is a 1 during the erase cycle and becomes a 0 when the cycle is finished and the device is ready to accept other instructions again. After the Erase Security Register cycle has finished the Write Enable Latch (WEL) bit in the Status Register is cleared to 0. The Security Register Lock Bits LB[3:1] in the Status Register-2 can be used to OTP protect the security registers. Once a lock bit is set to 1, the corresponding security register will be permanently locked, Erase Security Register instruction to that register will be ignored.

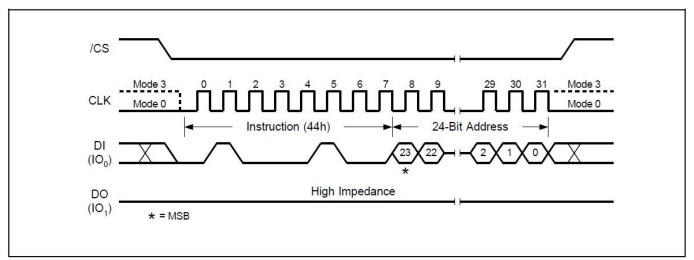



Figure 33. Erase Security Registers Instruction (SPI Mode only)



#### 9.35 Program Security Registers (42h)

The Program Security Register instruction is similar to the Page Program instruction. It allows from one byte to 1024 bytes of security register data to be programmed at previously erased (FFh) memory locations. A Write Enable instruction must be executed before the device will accept the Program Security Register Instruction (Status Register bit WEL= 1). The instruction is initiated by driving the /CS pin low then shifting the instruction code "42h" followed by a 24-bit address (A23-A0) and at least one data byte, into the DI pin. The /CS pin must be held low for the entire length of the instruction while data is being sent to the device.

| ADDRESS              | A23-A16 | A15-A11 | A10-A0       |
|----------------------|---------|---------|--------------|
| Security Register #1 | 00h     | 0h      | Byte Address |
| Security Register #2 | 00h     | 1h      | Byte Address |
| Security Register #3 | 00h     | 2h      | Byte Address |

The Program Security Register instruction sequence is shown in Figure 34. The Security Register Lock Bits LB[3:1] in the Status Register-2 can be used to OTP protect the security registers. Once a lock bit is set to 1, the corresponding security register will be permanently locked, Program Security Register instruction to that register will be ignored

#### 32-Bit Address is required when the device is operating in 4-Byte Address Mode

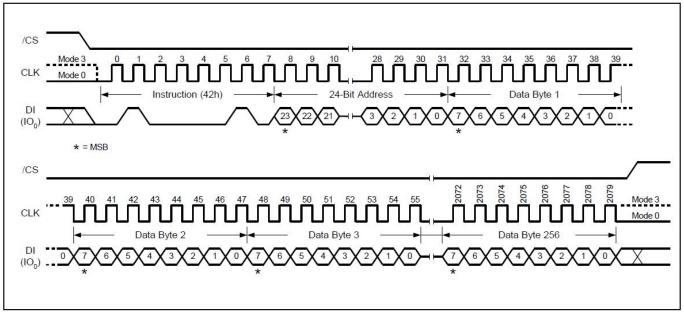



Figure 34. Program Security Registers Instruction (SPI Mode only)

# G

### GT25Q64A-S

#### 9.36 Read Security Registers (48h)

The Read Security Register instruction is similar to the Fast Read instruction and allows one or more data bytes to be sequentially read from one of the three security registers. The instruction is initiated by driving the /CS pin low and then shifting the instruction code "48h" followed by a 24-bit address (A23-A0) and eight "dummy" clocks into the DI pin. The code and address bits are latched on the rising edge of the CLK pin. After the address is received, the data byte of the addressed memory location will be shifted out on the DO pin at the falling edge of CLK with most significant bit (MSB) first. The byte address is automatically incremented to the next byte address after each byte of data is shifted out. Once the byte address reaches the last byte of the register (byte FFh), it will reset to 00h, the first byte of the register, and continue to increment. The instruction is completed by driving /CS high. The Read Security Register instruction sequence is shown in Figure 34. If a Read Security Register instruction is issued while an Erase, Program or Write cycle is in process (BUSY=1) the instruction is ignored and will not have any effects on the current cycle. The Read Security Register instruction allows clock rates from D.C. to a maximum of FR (see AC Electrical Characteristics).

| ADDRESS              | A23-A16 | A15-A11 | A10-A0       |
|----------------------|---------|---------|--------------|
| Security Register #1 | 00h     | 0h      | Byte Address |
| Security Register #2 | 00h     | 1h      | Byte Address |
| Security Register #3 | 00h     | 2h      | Byte Address |

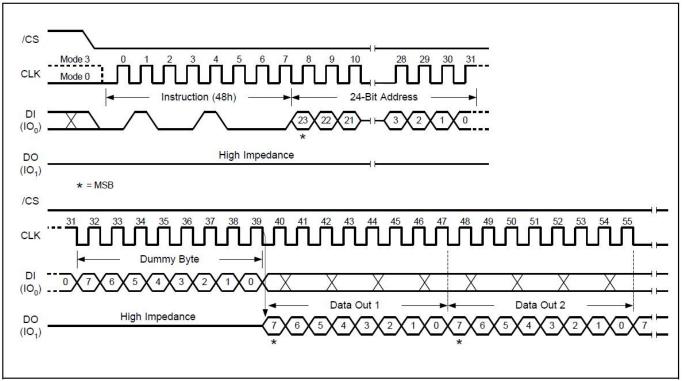



Figure 35. Read Security Registers Instruction (SPI Mode only)

#### 9.37 Set Read Parameters (C0h)

In QPI mode, to accommodate a wide range of applications with different needs for either maximum read frequency or minimum data access latency, "Set Read Parameters (C0h)" instruction can be used to configure the number of dummy clocks for "Fast Read (0Bh)", "Fast Read Quad I/O (EBh)" & "Burst Read with Wrap (0Ch)" instructions, and to configure the number of bytes of "Wrap Length" for the "Burst Read with Wrap (0Ch)" instruction.

In Standard SPI mode, the "Set Read Parameters (C0h)" instruction is not accepted. The dummy clocks for various Fast Read instructions in Standard/Dual/Quad SPI mode are fixed, please refer to the Instruction Table 1-2 for details. The "Wrap Length" is set by W5-4 bit in the "Set Burst with Wrap (77h)" instruction. This setting will remain unchanged when the device is switched from Standard SPI mode to QPI mode.

The default "Wrap Length" after a power up or a Reset instruction is 8 bytes, the default number of dummy clocks is 2. The number of dummy clocks is only programmable for "Fast Read (0Bh)", "Fast Read Quad I/O (EBh)" & "Burst Read with Wrap (0Ch)" instructions in the QPI mode. Whenever the device is switched from SPI mode to QPI mode, the number of dummy clocks should be set again, prior to any 0Bh, EBh or 0Ch instructions.

| P5 - P4 | Dmmy Clock | Maximum Read FREQ |
|---------|------------|-------------------|
| 0 0     | 2          | 50MHz             |
| 0 1     | 4          | 80MHz             |
| 1 0     | 6          | 104MHz            |
| 1 1     | 8          | 110MHz            |

| P1 - P0 | Wrap Length |
|---------|-------------|
| 0 0     | 8-Byte      |
| 0 1     | 16-Byte     |
| 1 0     | 32-Byte     |
| 1 1     | 64-Byte     |

Note: 4-bytes address alignment for QPI Read: read address start from A1,A0=0,0

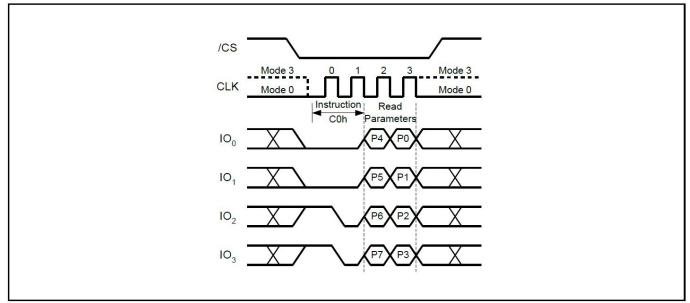



Figure 36. Set Read Parameters Instruction (QPI Mode only)



#### 9.38 Burst Read with Wrap (0Ch)

The "Burst Read with Wrap (0Ch)" instruction provides an alternative way to perform the read operation with "Wrap Around" in QPI mode. The instruction is similar to the "Fast Read (0Bh)" instruction in QPI mode, except the addressing of the read operation will "Wrap Around" to the beginning boundary of the "Wrap Length" once the ending boundary is reached.

The "Wrap Length" and the number of dummy clocks can be configured by the "Set Read Parameters (C0h)" instruction.

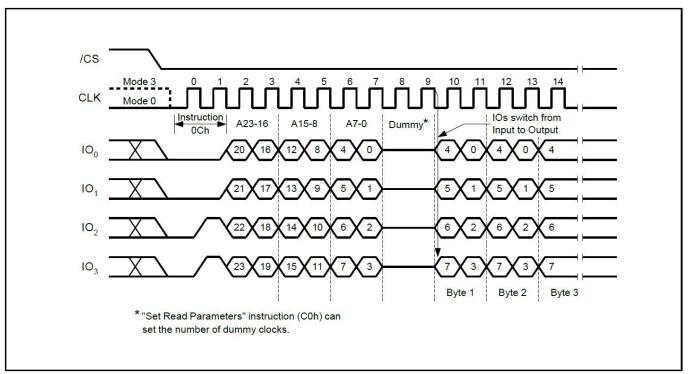



Figure 37. Burst Read with Wrap Instruction (QPI Mode only)



#### 9.39 DTR Burst Read with Wrap (0Eh)

The "DTR Burst Read with Wrap (0Eh)" instruction provides an alternative way to perform the read operation with "Wrap Around" in QPI mode. The instruction is similar to the "Fast Read (0Bh)" instruction in QPI mode, except the addressing of the read operation will "Wrap Around" to the beginning boundary of the "Wrap Length" once the ending boundary is reached. The "Wrap Length" can be configured by the "Set Read Parameters (C0h)" instruction.

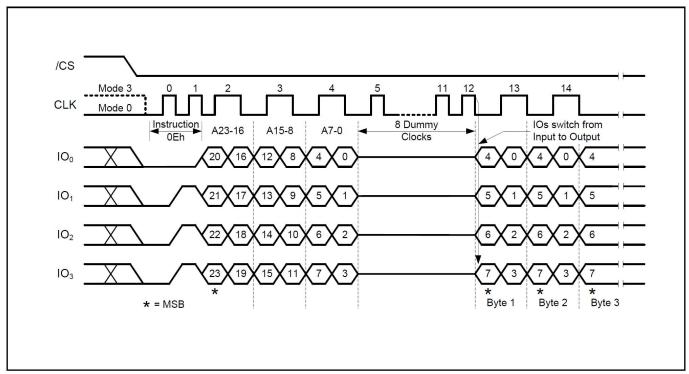



Figure 38. DTR Burst Read with Wrap Instruction (QPI Mode only)



#### 9.40 Enter QPI Mode (38h)

The GT25Q64A-S support both Standard/Dual/Quad Serial Peripheral Interface (SPI) and Quad Peripheral Interface (QPI). However, SPI mode and QPI mode cannot be used at the same time. "Enter QPI (38h)" instruction is the only way to switch the device from SPI mode to QPI mode.

Upon power-up, the default state of the device upon is Standard/Dual/Quad SPI mode. This provides full backward compatibility with earlier generations of Giantec serial flash memories. See Instruction Set Table 1-3 for all supported SPI commands. In order to switch the device to QPI mode, the Quad Enable (QE) bit in Status Register-2 must be set to 1 first, and an "Enter QPI (38h)" instruction must be issued. If the Quad Enable (QE) bit is 0, the "Enter QPI (38h)" instruction will be ignored and the device will remain in SPI mode.

See Instruction Set Table 3 for all the commands supported in QPI mode.

When the device is switched from SPI mode to QPI mode, the existing Write Enable and Program/Erase Suspend status, and the Wrap Length setting will remain unchanged.

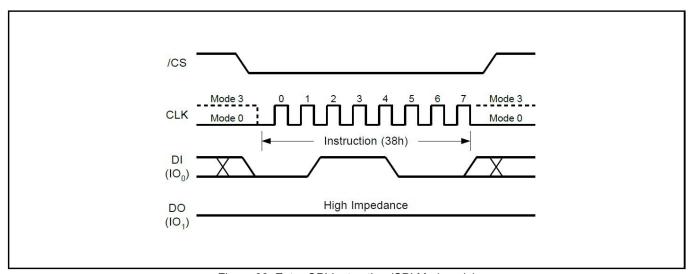



Figure 39. Enter QPI Instruction (SPI Mode only)



#### 9.41 Exit QPI Mode (FFh)

In order to exit the QPI mode and return to the Standard/Dual/Quad SPI mode, an "Exit QPI (FFh)" instruction must be issued.

When the device is switched from QPI mode to SPI mode, the existing Write Enable Latch (WEL) and Program/Erase Suspend status, and the Wrap Length setting will remain unchanged.

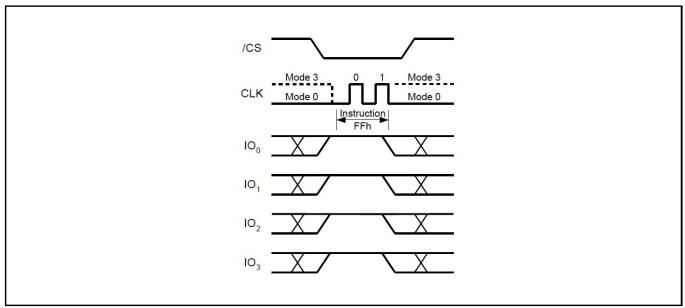



Figure 40 Exit QPI Instruction (QPI Mode only)



#### 9.42 Individual Block/Sector Lock (36h)

The Individual Block/Sector Lock provides an alternative way to protect the memory array from adverse Erase/Program. In order to use the Individual Block/Sector Locks, the WPS bit in Status Register-3 must be set to 1. If WPS=0, the write protection will be determined by the combination of CMP, SEC, TB, BP[3:0] bits in the Status Registers. The Individual Block/Sector Lock bits are volatile bits. The default values after device power up or after a Reset are 1, so the entire memory array is being protected.

To lock a specific block or sector as illustrated in Figure IBL, an Individual Block/Sector Lock command must be issued by driving /CS low, shifting the instruction code "36h" into the Data Input (DI) pin on the rising edge of CLK, followed by a 24-bit address and then driving /CS high. A Write Enable instruction must be executed before the device will accept the Individual Block/Sector Lock Instruction (Status Register bit WEL= 1).

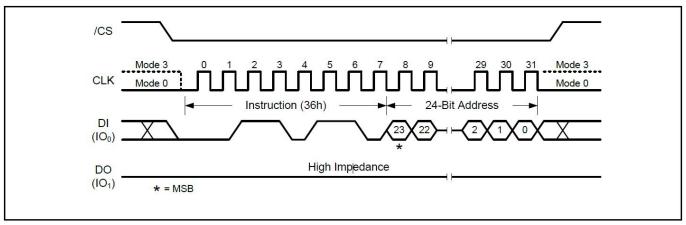



Figure 41a. Individual Block/Sector Lock Instruction for SPI Mode

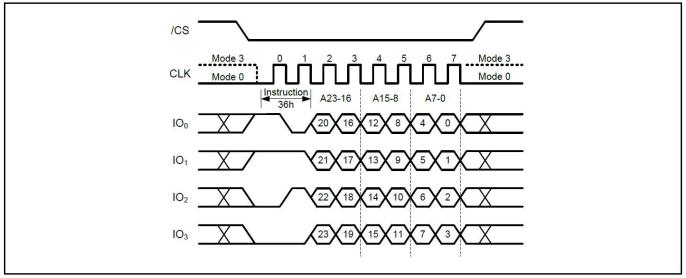



Figure 41b. Individual Block/Sector Lock Instruction for QPI Mode



#### 9.43 Individual Block/Sector Unlock (39h)

The Individual Block/Sector Lock provides an alternative way to protect the memory array from adverse Erase/Program. In order to use the Individual Block/Sector Locks, the WPS bit in Status Register-3 must be set to 1. If WPS=0, the write protection will be determined by the combination of CMP, SEC, TB, BP[3:0] bits in the Status Registers. The Individual Block/Sector Lock bits are volatile bits. The default values after device power up or after a Reset are 1, so the entire memory array is being protected.

To unlock a specific block or sector as illustrated in Figure IBL, an Individual Block/Sector Unlock command must be issued by driving /CS low, shifting the instruction code "39h" into the Data Input (DI) pin on the rising edge of CLK, followed by a 24-bit address and then driving /CS high. A Write Enable instruction must be executed before the device will accept the Individual Block/Sector Unlock Instruction (Status Register bit WEL= 1).

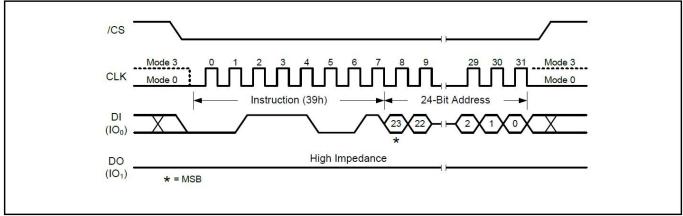



Figure 42a. Individual Block Unlock Instruction for SPI Mode

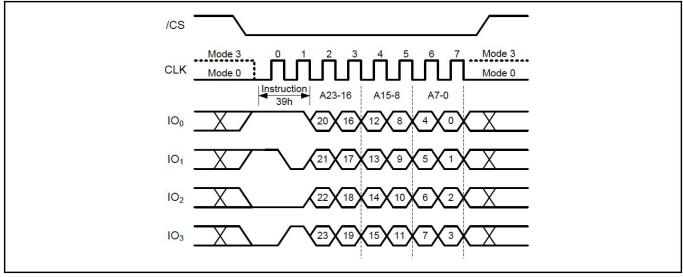



Figure 42b. Individual Block Unlock Instruction for QPI Mode

# E

### GT25Q64A-S

#### 9.44 Read Block/Sector Lock (3Dh)

The Individual Block/Sector Lock provides an alternative way to protect the memory array from adverse Erase/Program. In order to use the Individual Block/Sector Locks, the WPS bit in Status Register-3 must be set to 1. If WPS=0, the write protection will be determined by the combination of CMP, SEC, TB, BP[3:0] bits in the Status Registers. The Individual Block/Sector Lock bits are volatile bits. The default values after device power up or after a Reset are 1, so the entire memory array is being protected.

To read out the lock bit value of a specific block or sector as illustrated in Figure IBL, a Read Block/Sector Lock command must be issued by driving /CS low, shifting the instruction code "3Dh" into the Data Input (DI) pin on the rising edge of CLK, followed by a 24-bit address. The Block/Sector Lock bit value will be shifted out on the DO pin at the falling edge of CLK with most significant bit (MSB) first as shown in Figure 42. If the least significant bit (LSB) is 1, the corresponding block/sector is locked; if LSB=0, the corresponding block/sector is unlocked, Erase/Program operation can be performed.

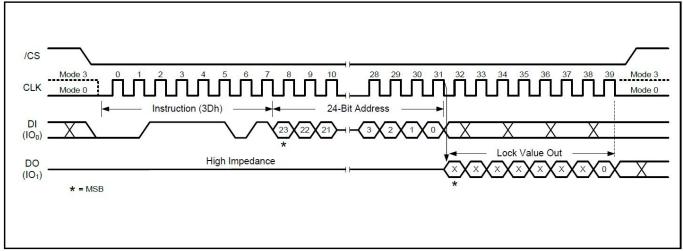



Figure 43a. Read Block Lock Instruction for SPI Mode

32-Bit Address is required when the device is operating in 4-Byte Address Mode

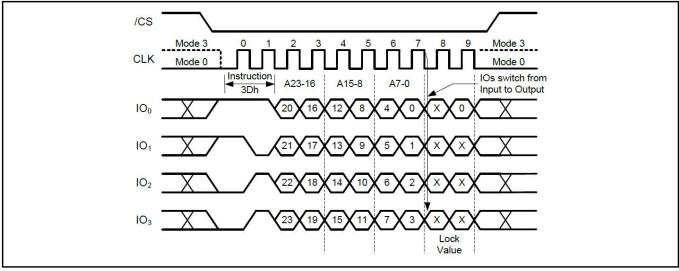



Figure 43b. Read Block Lock Instruction for QPI Mode



#### 9.45 Global Block/Sector Lock (7Eh)

All Block/Sector Lock bits can be set to 1 by the Global Block/Sector Lock instruction. The command must be issued by driving /CS low, shifting the instruction code "7Eh" into the Data Input (DI) pin on the rising edge of CLK, and then driving /CS high. A Write Enable instruction must be executed before the device will accept the Global Block/Sector Lock Instruction (Status Register bit WEL= 1).

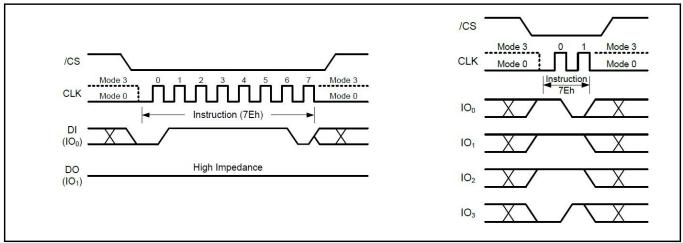



Figure 44. Global Block Lock Instruction for SPI Mode (left) or QPI Mode (right)

#### 9.46 Global Block/Sector Unlock (98h)

All Block/Sector Lock bits can be set to 0 by the Global Block/Sector Unlock instruction. The command must be issued by driving /CS low, shifting the instruction code "98h" into the Data Input (DI) pin on the rising edge of CLK, and then driving /CS high. A Write Enable instruction must be executed before the device will accept the Global Block/Sector Unlock Instruction (Status Register bit WEL= 1).

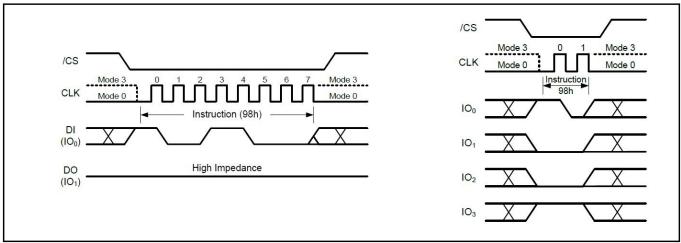


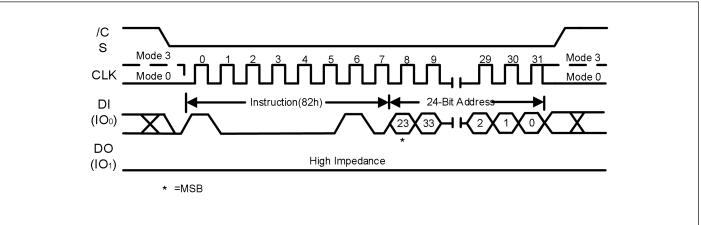

Figure 45. Global Block Unlock Instruction for SPI Mode (left) or QPI Mode (right)

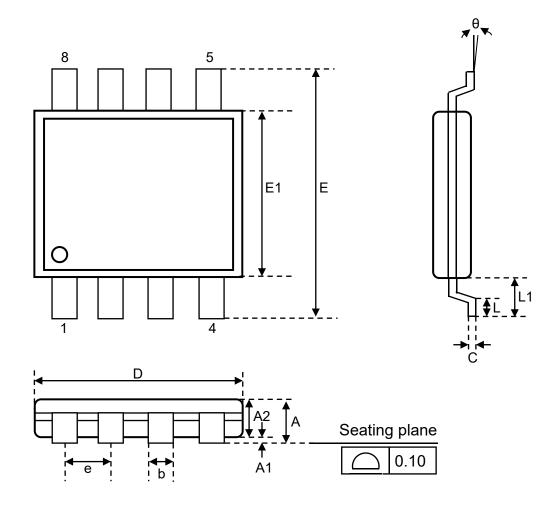


#### 9.47 Mini Sector Erase (MSE) (82H)

The Mini Sector Erase (MSE) (82H) command is for erasing the all data of the chosen 2KB sector. A Write Enable (WREN) command must previously have been executed to set the Write Enable Latch (WEL) bit. The Mini Sector Erase (MSE) command is entered by driving CS# low, followed by the command code, and 3-address byte on SI. Any address inside the sector is a valid address for the Mini Sector Erase (MSE) command. CS# must be driven low for the entire duration of the sequence.

The Mini Sector Erase command sequence: CS# goes low  $\rightarrow$  sending Sector Erase command  $\rightarrow$  3-byte address on DI  $\rightarrow$  CS# goes high. The command sequence is shown in Figure46. CS# must be driven high after the eighth bit of the last address byte has been latched in; otherwise the Mini Sector Erase (MSE) command is not executed. As soon as CS# is driven high, the self-timed Mini Sector Erase cycle (whose duration is t MSE) is initiated. While the Mini Sector Erase cycle is in progress, the Status Register may be read to check the value of the Write in Progress (BUSY) bit. The Write in Progress (BUSY) bit is 1 during the self-timed Mini Sector Erase cycle, and is 0 when it is completed. At some unspecified time before the cycle is completed, the Write Enable Latch (WEL) bit is reset. A Mini Sector Erase (MSE) command applied to a sector which is protected by the Block Protect (SEC, TB, BP2, BP1, and BP0) bit (see Table 1-6) is not executed.



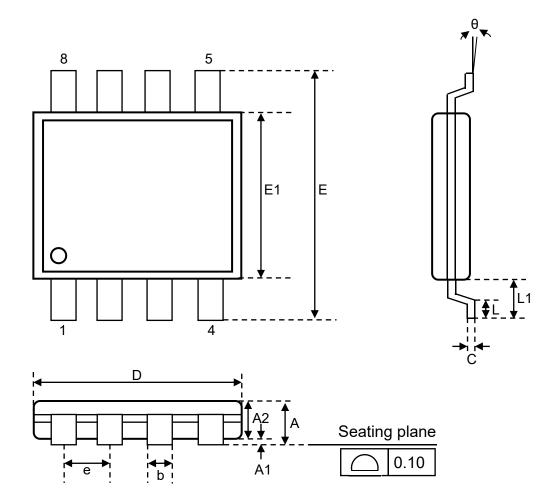


Figure 46. Mini Sector Erase Sequence Diagram





### 10 Package Information

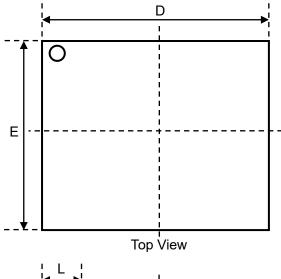
#### 10.1 Package SOP8 208MIL

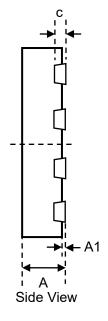


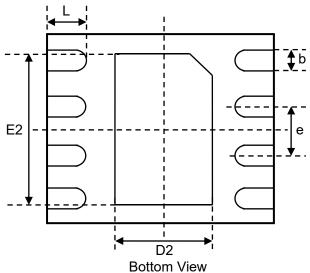

| Cymbol |      | mm   |      |       | Inch  |       |
|--------|------|------|------|-------|-------|-------|
| Symbol | Min  | Nom  | Max  | Min   | Nom   | Max   |
| Α      | 1.75 | 1.95 | 2.16 | 0.069 | 0.077 | 0.085 |
| A1     | 0.05 | 0.15 | 0.25 | 0.002 | 0.006 | 0.010 |
| A2     | 1.70 | 1.80 | 1.91 | 0.067 | 0.071 | 0.075 |
| b      | 0.31 | 0.41 | 0.51 | 0.012 | 0.016 | 0.020 |
| С      | 0.18 | 0.21 | 0.25 | 0.007 | 0.008 | 0.010 |
| D      | 5.13 | 5.23 | 5.33 | 0.202 | 0.206 | 0.210 |
| E      | 7.70 | 7.90 | 8.10 | 0.303 | 0.311 | 0.319 |
| E1     | 5.18 | 5.28 | 5.38 | 0.204 | 0.208 | 0.212 |
| е      |      | 1.27 |      |       | 0.050 |       |
| L      | 0.50 | 0.67 | 0.85 | 0.020 | 0.026 | 0.033 |
| L1     | 1.21 | 1.31 | 1.41 | 0.048 | 0.052 | 0.056 |
| θ      | 0°   | 5°   | 8°   | 0°    | 5°    | 8°    |






### 10.2 Package SOP8 150MIL





| Cumbal |      | mm   |      |       | Inch  |       |
|--------|------|------|------|-------|-------|-------|
| Symbol | Min  | Nom  | Max  | Min   | Nom   | Max   |
| Α      | 1.35 | -    | 1.75 | 0.053 | -     | 0.069 |
| A1     | 0.10 | -    | 0.25 | 0.004 | •     | 0.010 |
| A2     | 1.35 | -    | 1.55 | 0.053 | -     | 0.061 |
| b      | 0.31 | -    | 0.51 | 0.012 | 0.016 | 0.020 |
| С      | 0.10 | -    | 0.25 | 0.004 | -     | 0.010 |
| D      | 4.80 | 4.90 | 5.03 | 0.189 | 0.193 | 0.197 |
| E      | 5.80 | 6.00 | 6.20 | 0.228 | 0.236 | 0.244 |
| E1     | 3.80 | 3.90 | 4.00 | 0.149 | 0.154 | 0.158 |
| е      | -    | 1.27 | -    | -     | 0.050 | -     |
| L      | 0.40 | -    | 0.90 | 0.016 | •     | 0.035 |
| L1     | 0.85 | 1.06 | 1.27 | 0.033 | 0.042 | 0.050 |
| θ      | 0°   | -    | 8°   | 0°    | -     | 8°    |

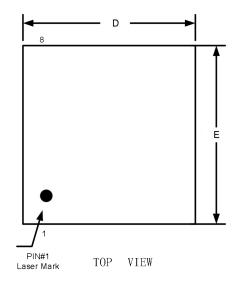


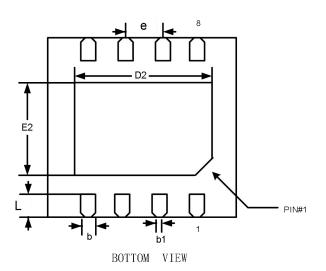
### 10.3 Package WSON8 (6\*5mm)

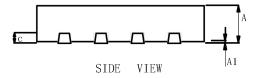







| Symbol |       | mm    |       |       | Inch  |       |
|--------|-------|-------|-------|-------|-------|-------|
| Symbol | Min   | Nom   | Max   | Min   | Nom   | Max   |
| Α      | 0.70  | 0.75  | 0.80  | 0.028 | 0.030 | 0.031 |
| A1     | 0.00  | 0.02  | 0.05  | 0.000 | 0.001 | 0.002 |
| С      | 0.180 | 0.203 | 0.250 | 0.007 | 0.008 | 0.010 |
| b      | 0.35  | 0.40  | 0.50  | 0.014 | 0.016 | 0.020 |
| D      | 5.90  | 6.00  | 6.10  | 0.232 | 0.236 | 0.240 |
| D2     | 3.30  | 3.40  | 3.50  | 0.130 | 0.134 | 0.138 |
| E      | 4.90  | 5.00  | 5.10  | 0.193 | 0.197 | 0.201 |
| E2     | 3.90  | 4.00  | 4.10  | 0.154 | 0.157 | 0.161 |
| е      |       | 1.27  |       |       | 0.05  |       |
| L      | 0.50  | 0.60  | 0.75  | 0.020 | 0.024 | 0.030 |


Note:


<sup>1.</sup> The exposed metal pad area on the bottom of the package is floating.



### 10.4 Package WSON8 (4\*4mm)

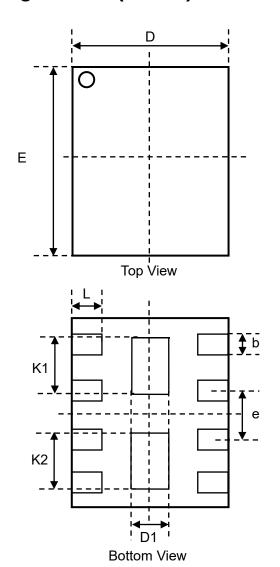


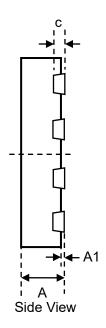




#### Note:

- 1. Controlling Dimension:MM
- 2. Drawing is not to scale


| Cumbal |          | mm   |      |       | Inch      |       |
|--------|----------|------|------|-------|-----------|-------|
| Symbol | Min      | Nom  | Max  | Min   | Nom       | Max   |
| Α      | 0.40     | 0.45 | 0.50 | 0.016 | 0.018     | 0.020 |
| A1     | 0.00     | 0.02 | 0.05 | 0.000 | 0.001     | 0.002 |
| b      | 0.25     | 0.30 | 0.35 | 0.010 | 0.012     | 0.014 |
| b1     | 0.15     | 0.20 | 0.25 | 0.006 | 0.008     | 0.010 |
| С      | 0.10     | 0.15 | 0.25 | 0.004 | 0.006     | 0.010 |
| D      | 3.90     | 4.00 | 4.10 | 0.154 | 0.157     | 0.161 |
| D2     | 2.90     | 3.00 | 3.10 | 0.114 | 0.118     | 0.122 |
| е      | 0.80 BSC |      |      |       | 0.315 BSC |       |
| E      | 3.90     | 4.00 | 4.10 | 0.154 | 0.157     | 0.161 |
| E2     | 2.20     | 2.30 | 2.40 | 0.087 | 0.091     | 0.094 |
| L      | 0.35     | 0.40 | 0.45 | 0.014 | 0.016     | 0.018 |


#### Note:

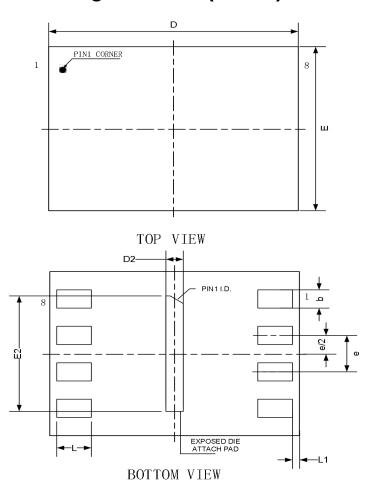
1. The exposed metal pad area on the bottom of the package is floating.

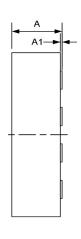


### 10.5 Package WSON8 (4\*3mm)






| Completed |      | mm   |      | Inch  |       |       |
|-----------|------|------|------|-------|-------|-------|
| Symbol    | Min  | Nom  | Max  | Min   | Nom   | Max   |
| Α         | 0.50 | 0.55 | 0.60 | 0.020 | 0.022 | 0.024 |
| A1        | 0.00 | 0.02 | 0.05 |       | 0.001 | 0.002 |
| С         | 0.10 | 0.15 | 0.20 | 0.004 | 0.006 | 0.008 |
| b         | 0.25 | 0.30 | 0.35 | 0.010 | 0.012 | 0.014 |
| D         | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 |
| D1        | 0.10 | 0.20 | 0.30 | 0.000 | 0.001 | 0.001 |
| E         | 3.90 | 4.00 | 4.10 | 0.154 | 0.157 | 0.161 |
| K1        | 0.70 | 0.80 | 0.90 | 0.002 | 0.002 | 0.002 |
| K2        | 0.70 | 0.80 | 0.90 | 0.002 | 0.002 | 0.002 |
| е         |      | 0.80 |      |       | 0.031 |       |
| L         | 0.55 | 0.60 | 0.65 | 0.022 | 0.024 | 0.026 |


Note

<sup>2.</sup> The exposed metal pad area on the bottom of the package is floating.



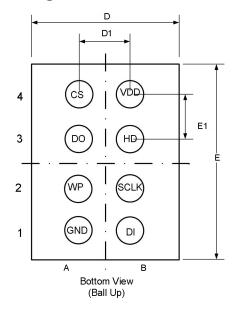
### 10.6 Package FANOUT8 (2\*3mm)

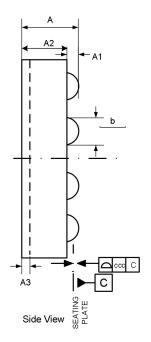


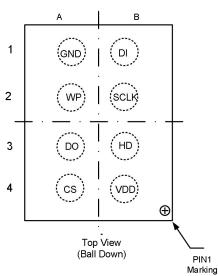


RIGHT VIEW

| Symbol |           | mm   |      |            | Inch      |       |
|--------|-----------|------|------|------------|-----------|-------|
| Symbol | Min       | Nom  | Max  | Min        | Nom       | Max   |
| Α      | 0.40      | 0.45 | 0.50 | 0.016      | 0.018     | 0.020 |
| A1     | 0.00      | /    | 0.05 | 0.000      | /         | 0.002 |
| b      | 0.20      | 0.25 | 0.30 | 0.008      | 0.010     | 0.012 |
| D      | 2.90      | 3.00 | 3.10 | 0.114      | 0.118     | 0.122 |
| D2     | 0.10      | 0.20 | 0.30 | 0.004      | 0.008     | 0.012 |
| Е      | 1.90      | 2.00 | 2.10 | 0.075      | 0.079     | 0.083 |
| E2     | 1.50      | 1.60 | 1.70 | 0.059      | 0.063     | 0.067 |
| е      | 0.50 BSC. |      |      |            | 0.020 BSC |       |
| L      | 0.30      | 0.35 | 0.40 | 0.012      | 0.014     | 0.016 |
| L1     | 0.1 REF.  |      |      | 0.004 REF. |           |       |


#### Note:


1. The exposed metal pad area on the bottom of the package is floating.






### 10.7 Package 8ball WLCSP







Note:

- 1. Controlled dimensions are in millimeter
- 2. Drawing is not in scale
- 3. With 25um lamination coating

| Symbol |     | mm  |     |     | Inch |     |
|--------|-----|-----|-----|-----|------|-----|
| Symbol | Min | Nom | Max | Min | Nom  | Max |
| Α      |     |     |     |     |      |     |
| A1     |     |     |     |     |      |     |
| A2     |     |     |     |     |      |     |
| A3     |     |     |     |     |      |     |
| b      |     |     |     |     |      |     |
| D      |     |     |     |     |      |     |
| D1     |     |     |     |     |      |     |
| Е      |     |     |     |     |      |     |
| E1     |     |     |     |     |      |     |
| ccc    |     |     |     |     |      |     |

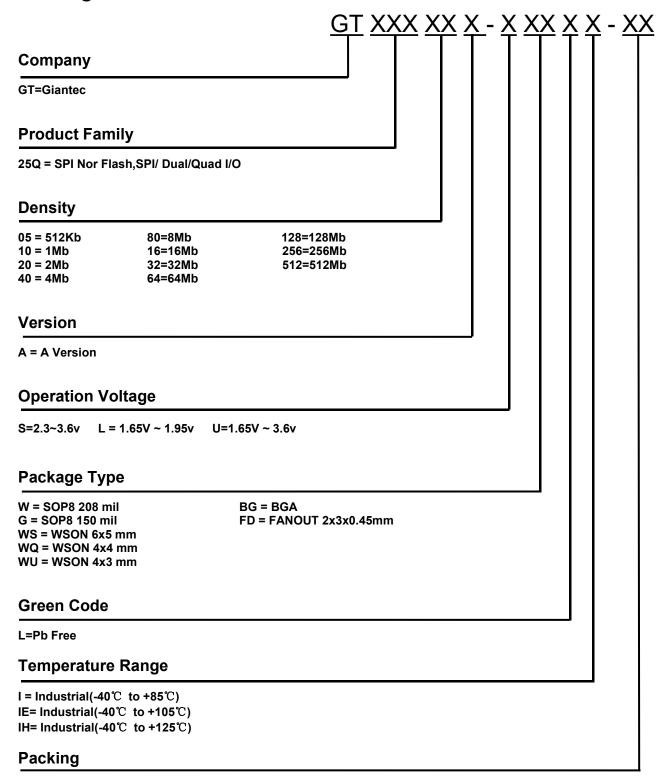
Note:

1. Please contact local Giantec for complete package dimensions.





### 10.8 Package 24ball TFBGA


| Symbol |     | mm  |     |     | Inch |     |
|--------|-----|-----|-----|-----|------|-----|
| Symbol | Min | Nom | Max | Min | Nom  | Max |
| Α      |     |     |     |     |      |     |
| A1     |     |     |     |     |      |     |
| A2     |     |     |     |     |      |     |
| A3     |     |     |     |     |      |     |
| b      |     |     |     |     |      |     |
| D      |     |     |     |     |      |     |
| D1     |     |     |     |     |      |     |
| E      |     |     |     |     |      |     |
| E1     |     |     |     |     |      |     |
| ccc    |     |     |     |     |      |     |

Note

<sup>1.</sup> Please contact local Giantec for complete package dimensions.



#### **11 Ordering Information**



TR= Tape & Reel



#### 12 Valid Part Numbers and Top Side Marking

The following table provides the valid part numbers for the GT25Q64A-S SPI Flash Memory. Please contact Giantec for specific

availability by density and package type.

| Density | Package Type | Product Number    | Top Side Marking                  |
|---------|--------------|-------------------|-----------------------------------|
|         | SOP8 208mil  | GT25Q64A-SWLI-TR  | G YWW 564A-S <u>W</u> LI          |
|         | SOP8 150mil  | GT25Q64A-SGLI-TR  | G YWW 564A-S <u>G</u> LI          |
| 0.44.0  | WSON 5x6     | GT25Q64A-SWSLI-TR | GT 564A S <u>WS</u> LI YWW        |
| 64Mb    | WSON 4x4     | GT25Q64A-SWQLI-TR | GT 564A S <u>WQ</u> LI <u>YWW</u> |
|         | WSON 4x3     | GT25Q64A-SWULI-TR | GT 564AW <u>YWW</u>               |
|         | FANOUT 2x3   | GT25Q64A-SFDLI-TR | GT-F 564A YWW                     |

#### **13 REVISION HISTORY**

| Revision | Date   | Descriptions                                                                     |
|----------|--------|----------------------------------------------------------------------------------|
| 1.0      | 2023/6 | Initial version                                                                  |
| 1.1      | 2024/4 | Update AC&DC                                                                     |
| 1.2      | 2024/5 | Update AC&DC and SFDP                                                            |
| 1.3      | 2024/6 | Add USON2.2x3x0.55                                                               |
| 1.4      | 2024/6 | Add WSON 4*4                                                                     |
| 1.5      | 2025/1 | Add USON 2*3*0.45, optimize the command table and top marking, fix Some details. |
| 1.6      | 2025/3 | Add FANOUT 2x3 package, add CIN&COUT&ICC8 spec, delete USON package              |
|          |        |                                                                                  |

#### **Important Notice**

Except for customized products which have been expressly identified in the applicable agreement, Giantec's products are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property damages. In the event Giantec products are used in contradicted to their target usage above, the buyer shall take any and all actions to ensure said Giantec's product qualified for its actual use in accordance with the applicable laws and regulations; and Giantec as well as it's suppliers and/or distributors shall be released from any and all liability arisen therefrom.

For the contact and order information, please visit Giantec's Web site at: http://www.giantec-semi.com